메뉴 건너뛰기




Volumn 24, Issue , 2014, Pages 597-602

Support vector machines classification based on particle swarm optimization for bone age determination

Author keywords

Bone age; Computer aided diagnosis; Particle swarm optimization; Support vector machines

Indexed keywords

ALGORITHMS; BONE; COMPUTER AIDED DIAGNOSIS; FEATURE EXTRACTION; IMAGE PROCESSING; PARTICLE SWARM OPTIMIZATION (PSO); SUPPORT VECTOR MACHINES;

EID: 84907308304     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.08.007     Document Type: Article
Times cited : (31)

References (34)
  • 1
    • 34248633145 scopus 로고    scopus 로고
    • Computerized geometric features of carpal bone for bone age estimation
    • C.W. Hsieh, T.L. Jong, Y.H. Chou, and C.M. Tiu Computerized geometric features of carpal bone for bone age estimation Chin. Med. J. 120 2007 767 770
    • (2007) Chin. Med. J. , vol.120 , pp. 767-770
    • Hsieh, C.W.1    Jong, T.L.2    Chou, Y.H.3    Tiu, C.M.4
  • 2
    • 77956755229 scopus 로고    scopus 로고
    • An automatic system for skeletal bone age measurement by robust processing of carpal and epiphysial/metaphysial bones
    • D. Giordano, C. Spampinato, G. Scarciofalo, and R. Leonardi An automatic system for skeletal bone age measurement by robust processing of carpal and epiphysial/metaphysial bones IEEE Trans. Instrum. Meas. 59 2010 2539 2553
    • (2010) IEEE Trans. Instrum. Meas. , vol.59 , pp. 2539-2553
    • Giordano, D.1    Spampinato, C.2    Scarciofalo, G.3    Leonardi, R.4
  • 3
    • 37149028604 scopus 로고    scopus 로고
    • Computerized bone age assessment using DCT and LDA, computer vision/computer graphics collaboration techniques
    • H.J. Kim, and W.Y. Kim Computerized bone age assessment using DCT and LDA, computer vision/computer graphics collaboration techniques Lect. Notes Comput. Sci. 4418 2007 440 448
    • (2007) Lect. Notes Comput. Sci. , vol.4418 , pp. 440-448
    • Kim, H.J.1    Kim, W.Y.2
  • 5
    • 77954432147 scopus 로고    scopus 로고
    • A fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment
    • C.W. Hsieh, T.C. Liu, T.L. Jong, and C.M. Tiu A fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment Med. Biol. Eng. Comput. 48 2010 579 588
    • (2010) Med. Biol. Eng. Comput. , vol.48 , pp. 579-588
    • Hsieh, C.W.1    Liu, T.C.2    Jong, T.L.3    Tiu, C.M.4
  • 7
    • 34247110847 scopus 로고    scopus 로고
    • Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones
    • DOI 10.1016/j.compmedimag.2007.02.008, PII S0895611107000201
    • A. Zhang, A. Gertych, and B.J. Liu Automatic bone age assessment for young children from newborn to 7 year old using carpal bones Comput. Med. Imaging Graph. 31 2007 299 310 (Pubitemid 46601784)
    • (2007) Computerized Medical Imaging and Graphics , vol.31 , Issue.4-5 , pp. 299-310
    • Zhang, A.1    Gertych, A.2    Liu, B.J.3
  • 9
    • 84855575746 scopus 로고    scopus 로고
    • Bone age assessment in young children using automatic carpal bone feature extraction and support vector regression
    • K. Somkantha, N.T. Umpon, and S. Auephanwiriyakul Bone age assessment in young children using automatic carpal bone feature extraction and support vector regression J. Digit. Imaging 24 2011 1044 1058
    • (2011) J. Digit. Imaging , vol.24 , pp. 1044-1058
    • Somkantha, K.1    Umpon, N.T.2    Auephanwiriyakul, S.3
  • 10
    • 84880169849 scopus 로고    scopus 로고
    • Support vector machine classification based on correlation prototypes applied to bone age assessment
    • M. Harmsen, B. Fischer, H. Schramm, T. Seidl, and T.M. Deserno Support vector machine classification based on correlation prototypes applied to bone age assessment J. Biomed. Health Inform. 17 2013 190 197
    • (2013) J. Biomed. Health Inform. , vol.17 , pp. 190-197
    • Harmsen, M.1    Fischer, B.2    Schramm, H.3    Seidl, T.4    Deserno, T.M.5
  • 11
    • 84963828203 scopus 로고    scopus 로고
    • Bone age determination in young children from newborn to 6 year-old using support vector machines
    • 10.3906/elk-1305-271 (in press)
    • G.E. GüraksIn, H. Uǧuz, and Ö.K. Baykan Bone age determination in young children from newborn to 6 year-old using support vector machines Turk. J. Electr. Eng. Comput. Sci. 2014 10.3906/elk-1305-271 (in press)
    • (2014) Turk. J. Electr. Eng. Comput. Sci.
    • Güraksin, G.E.1    Uǧuz, H.2    Baykan, Ö.K.3
  • 13
    • 50149108380 scopus 로고    scopus 로고
    • A distributed PSO-SVM hybrid system with feature selection and parameter optimization
    • C.L. Huang, and J.F. Dun A distributed PSO-SVM hybrid system with feature selection and parameter optimization Appl. Soft Comput. 8 2008 1381 1391
    • (2008) Appl. Soft Comput. , vol.8 , pp. 1381-1391
    • Huang, C.L.1    Dun, J.F.2
  • 14
    • 37349044334 scopus 로고    scopus 로고
    • Research into a feature selection method for hyperspectral imagery using PSO and SVM
    • H.C. Yang, S.B. Zhang, K.Z. Deng, and P.J. Du Research into a feature selection method for hyperspectral imagery using PSO and SVM J. China Univ. Min. Technol. 17 2007 473 478
    • (2007) J. China Univ. Min. Technol. , vol.17 , pp. 473-478
    • Yang, H.C.1    Zhang, S.B.2    Deng, K.Z.3    Du, P.J.4
  • 18
    • 84875921509 scopus 로고    scopus 로고
    • Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders
    • A. Subasi Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders Comput. Biol. Med. 43 2013 576 586
    • (2013) Comput. Biol. Med. , vol.43 , pp. 576-586
    • Subasi, A.1
  • 19
    • 84878941786 scopus 로고    scopus 로고
    • A PSO and pattern search based memetic algorithm for SVMs parameters optimization
    • Y. Bao, Z. Hu, and T. Xiong A PSO and pattern search based memetic algorithm for SVMs parameters optimization Neurocomputing 117 2013 98 106
    • (2013) Neurocomputing , vol.117 , pp. 98-106
    • Bao, Y.1    Hu, Z.2    Xiong, T.3
  • 23
    • 84862815257 scopus 로고    scopus 로고
    • A memetic particle swarm optimization algorithm for multimodal optimization problems
    • H. Wang, I. Moon, S. Yang, and D. Wang A memetic particle swarm optimization algorithm for multimodal optimization problems Inf. Sci. 197 2012 38 52
    • (2012) Inf. Sci. , vol.197 , pp. 38-52
    • Wang, H.1    Moon, I.2    Yang, S.3    Wang, D.4
  • 24
    • 84878907199 scopus 로고    scopus 로고
    • Particle swarm optimization with age-group topology for multimodal functions and data clustering
    • B. Jiang, N. Wang, and L. Wang Particle swarm optimization with age-group topology for multimodal functions and data clustering Commun. Nonlinear Sci. Numer. Simulat. 18 2013 3134 3145
    • (2013) Commun. Nonlinear Sci. Numer. Simulat. , vol.18 , pp. 3134-3145
    • Jiang, B.1    Wang, N.2    Wang, L.3
  • 25
    • 84885107711 scopus 로고    scopus 로고
    • Particle swarm optimization with non-smooth penalty reformulation, for a complex portfolio selection problem
    • M. Corazza, G. Fasano, and R. Gusso Particle swarm optimization with non-smooth penalty reformulation, for a complex portfolio selection problem Appl. Math. Comput. 224 2013 611 624
    • (2013) Appl. Math. Comput. , vol.224 , pp. 611-624
    • Corazza, M.1    Fasano, G.2    Gusso, R.3
  • 26
    • 84886721648 scopus 로고    scopus 로고
    • A particle swarm optimization for a fuzzy multi-objective unrelated parallel machines scheduling problem
    • S.A. Torabia, N. Sahebjamnia, S.A. Mansouri, and M. Aramon Bajestani A particle swarm optimization for a fuzzy multi-objective unrelated parallel machines scheduling problem Appl. Soft Comput. 13 2013 4750 4762
    • (2013) Appl. Soft Comput. , vol.13 , pp. 4750-4762
    • Torabia, S.A.1    Sahebjamnia, N.2    Mansouri, S.A.3    Aramon Bajestani, M.4
  • 27
    • 43149117467 scopus 로고    scopus 로고
    • Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025
    • A. Ünler Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025 Energy Policy 36 2008 1937 1944
    • (2008) Energy Policy , vol.36 , pp. 1937-1944
    • Ünler, A.1
  • 28
  • 29
    • 71149094068 scopus 로고    scopus 로고
    • Midpoint validation method for support vector machines with margin adjustment technique
    • H. Tamura, and K. Tanno Midpoint validation method for support vector machines with margin adjustment technique Int. J. Innov. Comput. Inf. Control 5 2009 4025 4032
    • (2009) Int. J. Innov. Comput. Inf. Control , vol.5 , pp. 4025-4032
    • Tamura, H.1    Tanno, K.2
  • 32
    • 2142813788 scopus 로고    scopus 로고
    • Improved support vector classification using PCA and ICA feature space modification
    • DOI 10.1016/j.patcog.2003.11.009, PII S0031320303004291
    • J. Fortuna, and D. Capson Improved support vector classification using PCA and ICA feature space modification Pattern Recognit. 37 2004 1117 1129 (Pubitemid 38549814)
    • (2004) Pattern Recognition , vol.37 , Issue.6 , pp. 1117-1129
    • Fortuna, J.1    Capson, D.2
  • 33
    • 45049083533 scopus 로고    scopus 로고
    • A new training method for support vector machines: Clustering k-NN support vector machines
    • E. Çomak, and A. Arslan A new training method for support vector machines: clustering k-NN support vector machines Expert Syst. Appl. 35 2008 564 568
    • (2008) Expert Syst. Appl. , vol.35 , pp. 564-568
    • Çomak, E.1    Arslan, A.2
  • 34
    • 33750455785 scopus 로고    scopus 로고
    • A new medical decision making system: Least square support vector machine (LSSVM) with Fuzzy Weighting Pre-processing
    • DOI 10.1016/j.eswa.2005.12.001, PII S0957417405003507
    • E. Çomak, K. Polat, S. Güneş, and A. Arslan A new medical decision making system: least square support vector machine (LSSVM) with fuzzy weighting pre-processing Expert Syst. Appl. 32 2007 409 414 (Pubitemid 44647809)
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 409-414
    • Comak, E.1    Polat, K.2    Gunes, S.3    Arslan, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.