메뉴 건너뛰기




Volumn 45, Issue 12, 2012, Pages 4346-4357

The infinite Students t-factor mixture analyzer for robust clustering and classification

Author keywords

Classification; Clustering; Infinite Students t factor mixture analyzer; Nonparametric Bayesian statistics; Variational inference

Indexed keywords

APPROPRIATE MODELS; CLUSTERING; FINITE MIXTURES; GENERALIZATION CAPACITY; HIGH DIMENSIONAL DATA; INFINITE NUMBERS; INFINITE STUDENTS T-FACTOR MIXTURE ANALYZER; MAXIMUM LIKELIHOOD CRITERIA; NON-PARAMETRIC BAYESIAN; NUMBER OF COMPONENTS; OBSERVED DATA; OVERFITTING; PARAMETER ESTIMATION METHOD; ROBUST CLUSTERING; VARIATIONAL INFERENCE;

EID: 84864278926     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2012.05.003     Document Type: Article
Times cited : (27)

References (42)
  • 1
    • 0002965815 scopus 로고
    • The proof and measurement of association between two things
    • C. Spearman The proof and measurement of association between two things American Journal of Psychology 15 1904 72 101
    • (1904) American Journal of Psychology , vol.15 , pp. 72-101
    • Spearman, C.1
  • 6
    • 79956083513 scopus 로고    scopus 로고
    • Maximum likelihood estimation of mixture of factor analyzers
    • A. Montanari, C. Viroli Maximum likelihood estimation of mixture of factor analyzers Computational Statistics and Data Analysis 55 9 2011 2712 2723
    • (2011) Computational Statistics and Data Analysis , vol.55 , Issue.9 , pp. 2712-2723
    • Montanari, A.1    Viroli, C.2
  • 8
    • 84947788012 scopus 로고    scopus 로고
    • Robust cluster analysis via mixtures of multivariate t-distributions
    • G.J. McLachlan, D. Peel Robust cluster analysis via mixtures of multivariate t-distributions Lecture Notes in Computer Science 1451 1998 658 666
    • (1998) Lecture Notes in Computer Science , vol.1451 , pp. 658-666
    • McLachlan, G.J.1    Peel, D.2
  • 9
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modelling using the t distribution
    • D. Peel, G.J. McLachlan Robust mixture modelling using the t distribution Statistics and Computing 10 4 2000 339 348
    • (2000) Statistics and Computing , vol.10 , Issue.4 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 10
    • 34247855883 scopus 로고    scopus 로고
    • Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution
    • G.J. McLachlan, R.W. Bean, B.J. Jones Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution Computational Statistics and Data Analysis 51 11 2007 5327 5338
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.11 , pp. 5327-5338
    • McLachlan, G.J.1    Bean, R.W.2    Jones, B.J.3
  • 11
    • 40749103793 scopus 로고    scopus 로고
    • Signal modeling and classification using a robust latent space model based on t distributions
    • S. Chatzis, D. Kosmopoulos, T. Varvarigou Signal modeling and classification using a robust latent space model based on t distributions IEEE Transactions on Signal Processing 56 3 2008 949 963
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.3 , pp. 949-963
    • Chatzis, S.1    Kosmopoulos, D.2    Varvarigou, T.3
  • 12
    • 78650198655 scopus 로고    scopus 로고
    • Mixtures of modified t-factor analyzers for model-based clustering, classification, discriminant analysis
    • J.L. Andrews, P.D. McNicholas Mixtures of modified t-factor analyzers for model-based clustering, classification, discriminant analysis Journal of Statistical Planning and Inference 141 4 2011 1479 1486
    • (2011) Journal of Statistical Planning and Inference , vol.141 , Issue.4 , pp. 1479-1486
    • Andrews, J.L.1    McNicholas, P.D.2
  • 13
    • 77958055170 scopus 로고    scopus 로고
    • Extending mixtures of multivariate t-factor analyzers
    • J.L. Andrews, P.D. McNicholas Extending mixtures of multivariate t-factor analyzers Statistics and Computing 21 3 2011 361 373
    • (2011) Statistics and Computing , vol.21 , Issue.3 , pp. 361-373
    • Andrews, J.L.1    McNicholas, P.D.2
  • 15
    • 77958504829 scopus 로고    scopus 로고
    • Model-based clustering of microarray expression data via latent Gaussian mixture models
    • P.D. McNicholas, T.B. Murphy Model-based clustering of microarray expression data via latent Gaussian mixture models Bioinformatics 26 21 2010 2705 2712
    • (2010) Bioinformatics , vol.26 , Issue.21 , pp. 2705-2712
    • McNicholas, P.D.1    Murphy, T.B.2
  • 16
    • 79954535330 scopus 로고    scopus 로고
    • Mixtures of common t-factor analyzers for clustering high-dimensional microarray data
    • J. Baek, G.J. McLachlan Mixtures of common t-factor analyzers for clustering high-dimensional microarray data Bioinformatics 27 9 2011 1269 1276
    • (2011) Bioinformatics , vol.27 , Issue.9 , pp. 1269-1276
    • Baek, J.1    McLachlan, G.J.2
  • 17
    • 78751536244 scopus 로고    scopus 로고
    • Heteroscedastic factor mixture analysis
    • A. Montanari, C. Viroli Heteroscedastic factor mixture analysis Statistical Modelling 10 4 2010 441 460
    • (2010) Statistical Modelling , vol.10 , Issue.4 , pp. 441-460
    • Montanari, A.1    Viroli, C.2
  • 18
    • 84895907429 scopus 로고    scopus 로고
    • Dimensionally reduced model-based clustering through mixtures of factor mixture analyzers
    • C. Viroli Dimensionally reduced model-based clustering through mixtures of factor mixture analyzers Journal of Classification 27 3 2010 363 388
    • (2010) Journal of Classification , vol.27 , Issue.3 , pp. 363-388
    • Viroli, C.1
  • 19
    • 77952666333 scopus 로고    scopus 로고
    • Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data
    • J. Baek, G.J. McLachlan, L.K. Flack Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data IEEE Transactions on Pattern Analysis and Machine Intelligence 32 7 2010 1298 1309
    • (2010) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.32 , Issue.7 , pp. 1298-1309
    • Baek, J.1    McLachlan, G.J.2    Flack, L.K.3
  • 20
    • 79960940517 scopus 로고    scopus 로고
    • Finite mixture models and model-based clustering
    • V. Melnykov, R. Maitra Finite mixture models and model-based clustering Statistics Surveys 4 2010 80 116
    • (2010) Statistics Surveys , vol.4 , pp. 80-116
    • Melnykov, V.1    Maitra, R.2
  • 21
    • 2642570831 scopus 로고    scopus 로고
    • Time series clustering with ARMA mixtures
    • Y. Xiong, D.Y. Yeung Time series clustering with ARMA mixtures Pattern Recognition 37 8 2004 1675 1689
    • (2004) Pattern Recognition , vol.37 , Issue.8 , pp. 1675-1689
    • Xiong, Y.1    Yeung, D.Y.2
  • 22
    • 0742324924 scopus 로고    scopus 로고
    • Singularities in mixture models and upper bounds of stochastic complexity
    • K. Yamazaki, S. Watanabe Singularities in mixture models and upper bounds of stochastic complexity Neural Networks 16 7 2003 1029 1038
    • (2003) Neural Networks , vol.16 , Issue.7 , pp. 1029-1038
    • Yamazaki, K.1    Watanabe, S.2
  • 25
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • C. Antoniak Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems Annals of Statistics 2 1974 1152 1174
    • (1974) Annals of Statistics , vol.2 , pp. 1152-1174
    • Antoniak, C.1
  • 26
    • 73949130630 scopus 로고    scopus 로고
    • A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling
    • N. Bouguila, D. Ziou A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling IEEE Transactions on Neural Networks 21 1 2010 107 122
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.1 , pp. 107-122
    • Bouguila, N.1    Ziou, D.2
  • 27
    • 80052303923 scopus 로고    scopus 로고
    • The infinite Students t-mixture for robust modeling
    • X. Wei, C. Li The infinite Students t-mixture for robust modeling Signal Processing 92 1 2012 224 234
    • (2012) Signal Processing , vol.92 , Issue.1 , pp. 224-234
    • Wei, X.1    Li, C.2
  • 28
    • 0033225865 scopus 로고    scopus 로고
    • A introduction to variational methods for graphical models
    • M.I. Jordan A introduction to variational methods for graphical models Machine Learning 37 2 1999 183 233
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1
  • 29
    • 70450248402 scopus 로고    scopus 로고
    • Parsimonious reduction of Gaussian mixture models with a variational-Bayes approach
    • P. Bruneau, M. Gelgon, F. Picarougne Parsimonious reduction of Gaussian mixture models with a variational-Bayes approach Pattern Recognition 43 3 2010 850 858
    • (2010) Pattern Recognition , vol.43 , Issue.3 , pp. 850-858
    • Bruneau, P.1    Gelgon, M.2    Picarougne, F.3
  • 30
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for Dirichlet process mixtures
    • D.M. Blei, M.I. Jordan Variational inference for Dirichlet process mixtures Bayesian Analysis 1 1 2006 121 144
    • (2006) Bayesian Analysis , vol.1 , Issue.1 , pp. 121-144
    • Blei, D.M.1    Jordan, M.I.2
  • 34
    • 79955422307 scopus 로고    scopus 로고
    • The Students t-hidden Markov model with truncated stick-breaking priors
    • X. Wei, C. Li The Students t-hidden Markov model with truncated stick-breaking priors IEEE Signal Processing Letters 18 6 2011 355 358
    • (2011) IEEE Signal Processing Letters , vol.18 , Issue.6 , pp. 355-358
    • Wei, X.1    Li, C.2
  • 35
    • 70549109507 scopus 로고    scopus 로고
    • Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models
    • P.D. McNicholas, T.B. Murphy, A.F. McDaid, D. Frost Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models Computational Statistics and Data Analysis 54 3 2010 711 723
    • (2010) Computational Statistics and Data Analysis , vol.54 , Issue.3 , pp. 711-723
    • McNicholas, P.D.1    Murphy, T.B.2    McDaid, A.F.3    Frost, D.4
  • 40
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery, prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • E.J. Yeoh Classification, subtype discovery, prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling Cancer Cell 1 2 2002 133 143
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 133-143
    • Yeoh, E.J.1
  • 41
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • G.J. McLachlan, R.W. Bean, D. Peel A mixture model-based approach to the clustering of microarray expression data Bioinformatics 18 3 2002 413 422
    • (2002) Bioinformatics , vol.18 , Issue.3 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 42
    • 36948999941 scopus 로고    scopus 로고
    • University of California, Department of Information and Computer Science
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository [ 〈 http://www.ics.uci.edu/∼mlearn/MLRepository.html 〉 ]. University of California, Department of Information and Computer Science, 2007.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.