메뉴 건너뛰기




Volumn 9, Issue 1, 2014, Pages

Hierarchical interactions model for predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) conversion

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ALZHEIMER DISEASE; ARTICLE; CONTROLLED STUDY; DATA BASE; DISEASE CLASSIFICATION; DISEASE COURSE; EARLY DIAGNOSIS; FOLLOW UP; HIERARCHICAL INTERACTIONS MODEL; HUMAN; INTERMETHOD COMPARISON; MAJOR CLINICAL STUDY; MILD COGNITIVE IMPAIRMENT; NEUROIMAGING; NUCLEAR MAGNETIC RESONANCE IMAGING; PATIENT IDENTIFICATION; PREDICTIVE VALIDITY; STATISTICAL MODEL;

EID: 84897372610     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0082450     Document Type: Article
Times cited : (39)

References (29)
  • 1
    • 77949336151 scopus 로고    scopus 로고
    • 2010 Alzheimer's disease facts and figures
    • Association A
    • Association A (2010) 2010 Alzheimer's disease facts and figures. Alzheimer's & Dementia 6: 158-194.
    • (2010) Alzheimer's & Dementia , vol.6 , pp. 158-194
  • 2
    • 0042067944 scopus 로고    scopus 로고
    • Mild cognitive impairment clinical trials
    • Petersen R (2003) Mild cognitive impairment clinical trials. Nature Reviews Drug Discovery 2: 646-653.
    • (2003) Nature Reviews Drug Discovery , vol.2 , pp. 646-653
    • Petersen, R.1
  • 3
    • 84862598129 scopus 로고    scopus 로고
    • Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data
    • Ye J, Farnum M, Yang E, Verbeeck R, Lobanov V, et al. (2012) Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. BMC neurology 12: 46.
    • (2012) BMC Neurology , vol.12 , pp. 46
    • Ye, J.1    Farnum, M.2    Yang, E.3    Verbeeck, R.4    Lobanov, V.5
  • 7
    • 79952188549 scopus 로고    scopus 로고
    • Derivation of a new ADAS-cog composite using treebased multivariate analysis: Prediction of conversion from mild cognitive impairment to alzheimer disease
    • Llano D, Laforet G, Devanarayan V (2011) Derivation of a new ADAS-cog composite using treebased multivariate analysis: prediction of conversion from mild cognitive impairment to alzheimer disease. Alzheimer Disease & Associated Disorders 25: 73.
    • (2011) Alzheimer Disease & Associated Disorders , vol.25 , pp. 73
    • Llano, D.1    Laforet, G.2    Devanarayan, V.3
  • 9
    • 77952558804 scopus 로고    scopus 로고
    • Variable selection with the strong heredity constraint and its oracle property
    • Choi N, Li W, Zhu J (2010) Variable selection with the strong heredity constraint and its oracle property. Journal of the American Statistical Association 105: 354-364.
    • (2010) Journal of the American Statistical Association , vol.105 , pp. 354-364
    • Choi, N.1    Li, W.2    Zhu, J.3
  • 10
    • 78651289934 scopus 로고    scopus 로고
    • Variable selection using adaptive nonlinear interaction structures in high dimensions
    • Radchenko P, James G (2010) Variable selection using adaptive nonlinear interaction structures in high dimensions. Journal of the American Statistical Association 105: 1541-1553.
    • (2010) Journal of the American Statistical Association , vol.105 , pp. 1541-1553
    • Radchenko, P.1    James, G.2
  • 11
    • 84877779785 scopus 로고    scopus 로고
    • High-order multi-task feature learning to identify longitudinal phenotypic markers for alzheimer's disease progression prediction
    • Wang H, Nie F, Huang H, Yan J, Kim S, et al. (2012) High-order multi-task feature learning to identify longitudinal phenotypic markers for alzheimer's disease progression prediction. In: Advances in Neural Information Processing Systems. pp. 1286-1294.
    • (2012) Advances in Neural Information Processing Systems , pp. 1286-1294
    • Wang, H.1    Nie, F.2    Huang, H.3    Yan, J.4    Kim, S.5
  • 12
    • 84862970066 scopus 로고    scopus 로고
    • Identifying quantitative trait loci via groupsparse multitask regression and feature selection: An imaging genetics study of the ADNI cohort
    • Wang H, Nie F, Huang H, Kim S, Nho K, et al. (2012) Identifying quantitative trait loci via groupsparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics 28: 229-237.
    • (2012) Bioinformatics , vol.28 , pp. 229-237
    • Wang, H.1    Nie, F.2    Huang, H.3    Kim, S.4    Nho, K.5
  • 13
    • 84863509119 scopus 로고    scopus 로고
    • Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning
    • Wang H, Nie F, Huang H, Risacher SL, Saykin AJ, et al. (2012) Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning. Bioinformatics 28: i127-i136.
    • (2012) Bioinformatics , vol.28
    • Wang, H.1    Nie, F.2    Huang, H.3    Risacher, S.L.4    Saykin, A.J.5
  • 14
    • 0030532505 scopus 로고    scopus 로고
    • Bayesian variable selection with related predictors
    • Chipman H (1996) Bayesian variable selection with related predictors. Canadian Journal of Statistics 24: 17-36.
    • (1996) Canadian Journal of Statistics , vol.24 , pp. 17-36
    • Chipman, H.1
  • 16
    • 0038136330 scopus 로고
    • Hierarchical variable selection in polynomial regression models
    • Peixoto J (1987) Hierarchical variable selection in polynomial regression models. The American Statistician 41: 311-313.
    • (1987) The American Statistician , vol.41 , pp. 311-313
    • Peixoto, J.1
  • 18
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Machine learning 45: 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 24
    • 70049091215 scopus 로고    scopus 로고
    • Efficient methods in convex programming
    • Nemirovski A (2005) Efficient methods in convex programming. Lecture Notes.
    • (2005) Lecture Notes
    • Nemirovski, A.1
  • 26
    • 79960810210 scopus 로고    scopus 로고
    • Manifold elastic net: A unified framework for sparse dimension reduction
    • Zhou T, Tao D, Wu X (2011) Manifold elastic net: a unified framework for sparse dimension reduction. Data Mining and Knowledge Discovery 22: 340-371.
    • (2011) Data Mining and Knowledge Discovery , vol.22 , pp. 340-371
    • Zhou, T.1    Tao, D.2    Wu, X.3
  • 27
    • 84871666572 scopus 로고    scopus 로고
    • Double shrinking for sparse dimension reduction
    • Zhou T, Tao D (2013) Double shrinking for sparse dimension reduction. IEEE Transactions on Image Processing 22: 244-257.
    • (2013) IEEE Transactions on Image Processing , vol.22 , pp. 244-257
    • Zhou, T.1    Tao, D.2
  • 29
    • 42949094902 scopus 로고    scopus 로고
    • An objective analysis of support vector machine based classification for remote sensing
    • Oommen T, Misra D, Twarakavi N, Prakash A, Sahoo B, et al. (2008) An objective analysis of support vector machine based classification for remote sensing. Mathematical geosciences 40: 409-424.
    • (2008) Mathematical Geosciences , vol.40 , pp. 409-424
    • Oommen, T.1    Misra, D.2    Twarakavi, N.3    Prakash, A.4    Sahoo, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.