메뉴 건너뛰기




Volumn 3, Issue , 2012, Pages 1988-1996

Multi-stage multi-task feature learning

Author keywords

[No Author keywords available]

Indexed keywords

BIOMEDICAL INFORMATICS; EMPIRICAL STUDIES; FEATURE LEARNING; GENERALIZATION PERFORMANCE; NONCONVEX OPTIMIZATION; PARAMETER ESTIMATION ERRORS; SPARSE REGULARIZATIONS; STATE OF THE ART;

EID: 84877724400     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (66)

References (29)
  • 1
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 4
    • 77956208061 scopus 로고    scopus 로고
    • Learning incoherent sparse and low-rank patterns from multiple tasks
    • J. Chen, J. Liu, and J. Ye. Learning incoherent sparse and low-rank patterns from multiple tasks. In SIGKDD, pages 1179-1188, 2010.
    • (2010) SIGKDD , pp. 1179-1188
    • Chen, J.1    Liu, J.2    Ye, J.3
  • 5
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • D. Donoho, M. Elad, and V. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 52(1):6-18, 2006.
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.1 , pp. 6-18
    • Donoho, D.1    Elad, M.2    Temlyakov, V.3
  • 6
    • 12244250351 scopus 로고    scopus 로고
    • Regularized multi-task learning
    • T. Evgeniou and M. Pontil. Regularized multi-task learning. In SIGKDD, pages 109-117, 2004.
    • (2004) SIGKDD , pp. 109-117
    • Evgeniou, T.1    Pontil, M.2
  • 8
    • 84866007553 scopus 로고    scopus 로고
    • Robust multi-task feature learning
    • P. Gong, J. Ye, and C. Zhang. Robust multi-task feature learning. In SIGKDD, pages 895-903, 2012.
    • (2012) SIGKDD , pp. 895-903
    • Gong, P.1    Ye, J.2    Zhang, C.3
  • 9
    • 85162062975 scopus 로고    scopus 로고
    • A dirty model for multi-task learning
    • A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for multi-task learning. In NIPS, pages 964-972, 2010.
    • (2010) NIPS , pp. 964-972
    • Jalali, A.1    Ravikumar, P.2    Sanghavi, S.3    Ruan, C.4
  • 10
    • 77956548668 scopus 로고    scopus 로고
    • Tree-guided group lasso for multi-task regression with structured sparsity
    • S. Kim and E. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In ICML, pages 543-550, 2009.
    • (2009) ICML , pp. 543-550
    • Kim, S.1    Xing, E.2
  • 11
    • 84898059927 scopus 로고    scopus 로고
    • Taking advantage of sparsity in multi-task learning
    • K. Lounici, M. Pontil, A. Tsybakov, and S. Van De Geer. Taking advantage of sparsity in multi-task learning. In COLT, pages 73-82, 2009.
    • (2009) COLT , pp. 73-82
    • Lounici, K.1    Pontil, M.2    Tsybakov, A.3    Geer De S.Van4
  • 13
    • 79952934740 scopus 로고    scopus 로고
    • Estimation of (near) low-rank matrices with noise and high-dimensional scaling
    • S. Negahban and M.Wainwright. Estimation of (near) low-rank matrices with noise and high-dimensional scaling. The Annals of Statistics, 39(2):1069-1097, 2011.
    • (2011) The Annals of Statistics , vol.39 , Issue.2 , pp. 1069-1097
    • Negahban, S.1    Wainwright, M.2
  • 15
    • 79551607002 scopus 로고    scopus 로고
    • Support union recovery in high-dimensional multivariate regression
    • G. Obozinski, M. Wainwright, and M. Jordan. Support union recovery in high-dimensional multivariate regression. Annals of statistics, 39(1):1-47, 2011.
    • (2011) Annals of Statistics , vol.39 , Issue.1 , pp. 1-47
    • Obozinski, G.1    Wainwright, M.2    Jordan, M.3
  • 16
    • 85162530133 scopus 로고    scopus 로고
    • Large margin multi-task metric learning
    • S. Parameswaran and K. Weinberger. Large margin multi-task metric learning. In NIPS, pages 1867-1875, 2010.
    • (2010) NIPS , pp. 1867-1875
    • Parameswaran, S.1    Weinberger, K.2
  • 18
    • 84899006514 scopus 로고    scopus 로고
    • Learning gaussian process kernels via hierarchical bayes
    • A. Schwaighofer, V. Tresp, and K. Yu. Learning gaussian process kernels via hierarchical bayes. In NIPS, pages 1209-1216, 2005.
    • (2005) NIPS , pp. 1209-1216
    • Schwaighofer, A.1    Tresp, V.2    Yu, K.3
  • 19
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the lasso
    • S. Van De Geer and P. Bühlmann. On the conditions used to prove oracle results for the lasso. Electronic Journal of Statistics, 3:1360-1392, 2009.
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 1360-1392
    • Geer De S.Van1    Bühlmann, P.2
  • 20
    • 84863338429 scopus 로고    scopus 로고
    • Heterogeneous multitask learning with joint sparsity constraints
    • X. Yang, S. Kim, and E. Xing. Heterogeneous multitask learning with joint sparsity constraints. In NIPS, pages 2151-2159, 2009.
    • (2009) NIPS , pp. 2151-2159
    • Yang, X.1    Kim, S.2    Xing, E.3
  • 21
    • 31844442664 scopus 로고    scopus 로고
    • Learning gaussian processes from multiple tasks
    • K. Yu, V. Tresp, and A. Schwaighofer. Learning gaussian processes from multiple tasks. In ICML, pages 1012-1019, 2005.
    • (2005) ICML , pp. 1012-1019
    • Yu, K.1    Tresp, V.2    Schwaighofer, A.3
  • 22
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • C. Zhang and J. Huang. The sparsity and bias of the lasso selection in high-dimensional linear regression. The Annals of Statistics, 36(4):1567-1594, 2008.
    • (2008) The Annals of Statistics , vol.36 , Issue.4 , pp. 1567-1594
    • Zhang, C.1    Huang, J.2
  • 23
    • 84871532743 scopus 로고    scopus 로고
    • A general theory of concave regularization for high dimensional sparse estimation problems
    • C. Zhang and T. Zhang. A general theory of concave regularization for high dimensional sparse estimation problems. Statistical Science, 2012.
    • (2012) Statistical Science
    • Zhang, C.1    Zhang, T.2
  • 24
    • 79951845184 scopus 로고    scopus 로고
    • Learning multiple related tasks using latent independent component analysis
    • J. Zhang, Z. Ghahramani, and Y. Yang. Learning multiple related tasks using latent independent component analysis. In NIPS, pages 1585-1592, 2006.
    • (2006) NIPS , pp. 1585-1592
    • Zhang, J.1    Ghahramani, Z.2    Yang, Y.3
  • 26
    • 77951191949 scopus 로고    scopus 로고
    • Analysis of multi-stage convex relaxation for sparse regularization
    • T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. JMLR, 11:1081-1107, 2010.
    • (2010) JMLR , vol.11 , pp. 1081-1107
    • Zhang, T.1
  • 27
    • 84877773187 scopus 로고    scopus 로고
    • Multi-stage convex relaxation for feature selection
    • T. Zhang. Multi-stage convex relaxation for feature selection. Bernoulli, 2012.
    • (2012) Bernoulli
    • Zhang, T.1
  • 28
    • 80052689284 scopus 로고    scopus 로고
    • Multi-task learning using generalized t process
    • Y. Zhang and D. Yeung. Multi-task learning using generalized t process. In AISTATS, 2010.
    • (2010) AISTATS
    • Zhang, Y.1    Yeung, D.2
  • 29
    • 85162400077 scopus 로고    scopus 로고
    • Clustered multi-task learning via alternating structure optimization
    • J. Zhou, J. Chen, and J. Ye. Clustered multi-task learning via alternating structure optimization. In NIPS, pages 702-710, 2011.
    • (2011) NIPS , pp. 702-710
    • Zhou, J.1    Chen, J.2    Ye, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.