메뉴 건너뛰기




Volumn 24, Issue 6, 2014, Pages 1381-1389

A hybrid SVM-PSO model for forecasting monthly streamflow

Author keywords

Forecasting; PSO; Streamflow; SVM; Time series

Indexed keywords

FORECASTING; NEURAL NETWORKS; STREAM FLOW; TIME SERIES;

EID: 84897982131     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-013-1341-y     Document Type: Article
Times cited : (152)

References (22)
  • 1
    • 54249106794 scopus 로고    scopus 로고
    • A new image thresholding method based on gaussian mixture model
    • Huang Z, Chau K (2008) A new image thresholding method based on gaussian mixture model. Appl Math Comput 205(2): 899-907.
    • (2008) Appl Math Comput , vol.205 , Issue.2 , pp. 899-907
    • Huang, Z.1    Chau, K.2
  • 2
    • 0036845179 scopus 로고    scopus 로고
    • Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration
    • Cheng C, Ou C, Chau K (2002) Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration. J Hydrol 268(1): 72-86.
    • (2002) J Hydrol , vol.268 , Issue.1 , pp. 72-86
    • Cheng, C.1    Ou, C.2    Chau, K.3
  • 3
    • 33845447724 scopus 로고    scopus 로고
    • A hybrid adaptive time-delay neural network model for multi-step-ahead prediction of sunspot activity
    • Xie J, Cheng C, Chau K, Pei Y (2006) A hybrid adaptive time-delay neural network model for multi-step-ahead prediction of sunspot activity. Int J Environ Pollut 28(3): 364-381.
    • (2006) Int J Environ Pollut , vol.28 , Issue.3 , pp. 364-381
    • Xie, J.1    Cheng, C.2    Chau, K.3    Pei, Y.4
  • 4
    • 54249107904 scopus 로고    scopus 로고
    • Palmprint identification using restricted fusion
    • Jia W, Ling B, Chau K, Heutte L (2008) Palmprint identification using restricted fusion. Appl Math Comput 205(2): 927-934.
    • (2008) Appl Math Comput , vol.205 , Issue.2 , pp. 927-934
    • Jia, W.1    Ling, B.2    Chau, K.3    Heutte, L.4
  • 5
    • 85006941509 scopus 로고    scopus 로고
    • Rainfall and runoff forecasting with SSA-SVM approach
    • Sivapragasam C, Liong S, Pasha M (2001) Rainfall and runoff forecasting with SSA-SVM approach. J Hydroinformat 3(3): 141-152.
    • (2001) J Hydroinformat , vol.3 , Issue.3 , pp. 141-152
    • Sivapragasam, C.1    Liong, S.2    Pasha, M.3
  • 6
  • 7
    • 10944222348 scopus 로고    scopus 로고
    • Use of soft information to describe the relative uncertainty of calibration data in hydrologic models
    • Khadam I, Kaluarachchi J (2004) Use of soft information to describe the relative uncertainty of calibration data in hydrologic models. Water Resour Res 40(11): W11505.
    • (2004) Water Resour Res , vol.40 , Issue.11
    • Khadam, I.1    Kaluarachchi, J.2
  • 8
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: the support vector machines approach
    • Asefa T, Kemblowski M, McKee M, Khalil A (2006) Multi-time scale stream flow predictions: the support vector machines approach. J Hydrol 318(1-4): 7-16.
    • (2006) J Hydrol , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 9
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17(1): 113-126.
    • (2004) Neural Netw , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 12
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: introduction and applications
    • Dibike Y, Velickov S, Solomatine D, Abbott M (2001) Model induction with support vector machines: introduction and applications. J Comput Civil Eng 15(3): 208-216.
    • (2001) J Comput Civil Eng , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.1    Velickov, S.2    Solomatine, D.3    Abbott, M.4
  • 14
    • 85006941509 scopus 로고    scopus 로고
    • Rainfall and runoff forecasting with SSA-SVM approach
    • Sivapragasam C, Liong S, Pasha M (2001) Rainfall and runoff forecasting with SSA-SVM approach. J Hydroinformatics 3(3): 141-152.
    • (2001) J Hydroinformatics , vol.3 , Issue.3 , pp. 141-152
    • Sivapragasam, C.1    Liong, S.2    Pasha, M.3
  • 15
    • 1642578192 scopus 로고    scopus 로고
    • Modelling of river discharges and rainfall using radial basis function networks based on support vector regression
    • Choy K, Chan C (2003) Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. Int J Syst Sci 34(1): 763-773.
    • (2003) Int J Syst Sci , vol.34 , Issue.1 , pp. 763-773
    • Choy, K.1    Chan, C.2
  • 16
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real-time hydrologic forecasting
    • Yu X, Liong S, Babovic V (2004) EC-SVM approach for real-time hydrologic forecasting. J Hydroinformatics 6(3): 209-223.
    • (2004) J Hydroinformatics , vol.6 , Issue.3 , pp. 209-223
    • Yu, X.1    Liong, S.2    Babovic, V.3
  • 17
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu P, Chen S, Chang I (2006) Support vector regression for real-time flood stage forecasting. J Hydrol 328(3-4): 704-716.
    • (2006) J Hydrol , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.1    Chen, S.2    Chang, I.3
  • 18
    • 79955221645 scopus 로고    scopus 로고
    • A closed loop stability analysis and parameter selection of the particle swarm optimization dynamics for faster convergence
    • CEC 2007. IEEE congress on, IEEE
    • Samal N, Konar A, Das S, Abraham A (2007) A closed loop stability analysis and parameter selection of the particle swarm optimization dynamics for faster convergence. In: Evolutionary computation, 2007. CEC 2007. IEEE congress on, IEEE, pp. 1769-1776.
    • (2007) Evolutionary computation, 2007 , pp. 1769-1776
    • Samal, N.1    Konar, A.2    Das, S.3    Abraham, A.4
  • 19
    • 84857656487 scopus 로고    scopus 로고
    • An inertia-adaptive particle swarm system with particle mobility factor for improved global optimization
    • Ghosh S, Das S, Kundu D, Suresh K, Panigrahi B, Cui Z (2012) An inertia-adaptive particle swarm system with particle mobility factor for improved global optimization. Neural Comput Appl 21(2): 237-250.
    • (2012) Neural Comput Appl , vol.21 , Issue.2 , pp. 237-250
    • Ghosh, S.1    Das, S.2    Kundu, D.3    Suresh, K.4    Panigrahi, B.5    Cui, Z.6
  • 20
    • 84865606945 scopus 로고    scopus 로고
    • Multi-sensor data fusion using support vector machine for motor fault detection
    • Banerjee T, Das S (2012) Multi-sensor data fusion using support vector machine for motor fault detection. Inf Sci 217: 96-107.
    • (2012) Inf Sci , vol.217 , pp. 96-107
    • Banerjee, T.1    Das, S.2
  • 21
    • 84862688092 scopus 로고    scopus 로고
    • A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
    • Nasir M, Das S, Maity D, Sengupta S, Haldar U, Suganthan P (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf Sci 209: 16-36.
    • (2012) Inf Sci , vol.209 , pp. 16-36
    • Nasir, M.1    Das, S.2    Maity, D.3    Sengupta, S.4    Haldar, U.5    Suganthan, P.6
  • 22
    • 77949606603 scopus 로고    scopus 로고
    • Hybridization of particle swarm optimization with quadratic approximation
    • Deep K, Bansal J (2009) Hybridization of particle swarm optimization with quadratic approximation. Opsearch 46(1): 3-24.
    • (2009) Opsearch , vol.46 , Issue.1 , pp. 3-24
    • Deep, K.1    Bansal, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.