-
1
-
-
0030211964
-
Bagging predictors
-
Leo Breiman. 1996. Bagging predictors. Machine Learning, 24(2):123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
33646407289
-
Discriminative reranking for natural language parsing
-
Michael Collins and Terry Koo. 2005. Discriminative reranking for natural language parsing. Computational Linguistics, 31(1):25-70.
-
(2005)
Computational Linguistics
, vol.31
, Issue.1
, pp. 25-70
-
-
Collins, M.1
Koo, T.2
-
5
-
-
85127836544
-
Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms
-
M. Collins. 2002. Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms. In Proceedings of ACL, pages 1-8.
-
(2002)
Proceedings of ACL
, pp. 1-8
-
-
Collins, M.1
-
6
-
-
31844441189
-
A general regression technique for learning transductions
-
New York, NY, USA. ACM
-
C. Cortes, M. Mohri, and J. Weston. 2005. A general regression technique for learning transductions. In Proceedings of ICML 2005, pages 153-160, New York, NY, USA. ACM.
-
(2005)
Proceedings of ICML 2005
, pp. 153-160
-
-
Cortes, C.1
Mohri, M.2
Weston, J.3
-
9
-
-
84906930422
-
Data-driven online to batch conversion
-
O. Dekel and Y. Singer. 2005. Data-driven online to batch conversion. In Advances in NIPS 18, pages 1207-1216.
-
(2005)
Advances in NIPS
, vol.18
, pp. 1207-1216
-
-
Dekel, O.1
Singer, Y.2
-
10
-
-
0030638031
-
Postprocessing system to yield reduced word error rates: Recognizer output voting error reduction (rover)
-
Santa Barbara, CA
-
Jonathan G Fiscus. 1997. Postprocessing system to yield reduced word error rates: Recognizer output voting error reduction (rover). In Proceedings of the 1997 IEEE ASRU Workshop, pages 347-354, Santa Barbara, CA.
-
(1997)
Proceedings of the 1997 IEEE ASRU Workshop
, pp. 347-354
-
-
Fiscus, J.G.1
-
11
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and application to boosting
-
Y. Freund and R. Schapire. 1997. A decision-theoretic generalization of on-line learning and application to boosting. Journal of Computer and System Sciences, 55(1):119-139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
13
-
-
70349227690
-
Web-derived pronunciations
-
Arnab Ghoshal, Martin Jansche, Sanjeev Khudanpur, Michael Riley, and Morgan Ulinski. 2009. Web-derived pronunciations. In Proceedings of ICASSP, pages 4289-4292.
-
(2009)
Proceedings of ICASSP
, pp. 4289-4292
-
-
Ghoshal, A.1
Jansche, M.2
Khudanpur, S.3
Riley, M.4
Ulinski, M.5
-
16
-
-
84870255848
-
Tree ensembles for predicting structured outputs
-
March
-
D. Kocev, C. Vens, J. Struyf, and S. Deroski. 2013. Tree ensembles for predicting structured outputs. Pattern Recognition, 46(3):817-833, March.
-
(2013)
Pattern Recognition
, vol.46
, Issue.3
, pp. 817-833
-
-
Kocev, D.1
Vens, C.2
Struyf, J.3
Deroski, S.4
-
17
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
Vladmir Koltchinskii and Dmitry Panchenko. 2002. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30.
-
(2002)
Annals of Statistics
, pp. 30
-
-
Koltchinskii, V.1
Panchenko, D.2
-
18
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML, pages 282-289.
-
(2001)
Proceedings of ICML
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
20
-
-
85011913774
-
From on-line to batch learning
-
N. Littlestone. 1989. From on-line to batch learning. In Proceedings of COLT 2, pages 269-284.
-
(1989)
Proceedings of COLT
, vol.2
, pp. 269-284
-
-
Littlestone, N.1
-
25
-
-
0348198473
-
Finite-state transducers in language and speech processing
-
Mehryar Mohri. 1997. Finite-state transducers in language and speech processing. Computational Linguistics, 23(2):269-311.
-
(1997)
Computational Linguistics
, vol.23
, Issue.2
, pp. 269-311
-
-
Mohri, M.1
-
26
-
-
34547982896
-
Comparison of sequence labeling algorithms and extensions
-
N. Nguyen and Y. Guo. 2007. Comparison of sequence labeling algorithms and extensions. In Proceedings of ICML, pages 681-688.
-
(2007)
Proceedings of ICML
, pp. 681-688
-
-
Nguyen, N.1
Guo, Y.2
-
28
-
-
79551488594
-
Products of random latent variable grammars
-
Slav Petrov. 2010. Products of random latent variable grammars. In HLT-NAACL, pages 19-27.
-
(2010)
HLT-NAACL
, pp. 19-27
-
-
Petrov, S.1
-
31
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Robert E. Schapire and Yoram Singer. 1999. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
32
-
-
0033905095
-
Boostexter: A boosting-based system for text categorization
-
Robert E. Schapire and Yoram Singer. 2000. Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2-3):135-168.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
33
-
-
0002595663
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. 1997. Boosting the margin: A new explanation for the effectiveness of voting methods. In ICML, pages 322-330.
-
(1997)
ICML
, pp. 322-330
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Sun Lee, W.4
-
34
-
-
0032661851
-
Linearly combining density estimators via stacking
-
July
-
Padhraic Smyth and David Wolpert. 1999. Linearly combining density estimators via stacking. Machine Learning, 36:59-83, July.
-
(1999)
Machine Learning
, vol.36
, pp. 59-83
-
-
Smyth, P.1
Wolpert, D.2
-
35
-
-
3142657664
-
Path kernels and multiplicative updates
-
E. Takimoto and M. K. Warmuth. 2003. Path kernels and multiplicative updates. JMLR, 4:773-818.
-
(2003)
JMLR
, vol.4
, pp. 773-818
-
-
Takimoto, E.1
Warmuth, M.K.2
-
36
-
-
84898948585
-
Max-margin markov networks
-
MIT Press, Cambridge, MA
-
B. Taskar, C. Guestrin, and D. Koller. 2004. Max-margin Markov networks. In Advances in NIPS 16. MIT Press, Cambridge, MA.
-
(2004)
Advances in NIPS
, vol.16
-
-
Taskar, B.1
Guestrin, C.2
Koller, D.3
-
37
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
December
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. 2005. Large margin methods for structured and interdependent output variables. JMLR, 6:1453-1484, December.
-
(2005)
JMLR
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
38
-
-
84880907398
-
Simple training of dependency parsers via structured boosting
-
Q. Wang, D. Lin, and D. Schuurmans. 2007. Simple training of dependency parsers via structured boosting. In Proceedings of IJCAI 20, pages 1756-1762.
-
(2007)
Proceedings of IJCAI
, vol.20
, pp. 1756-1762
-
-
Wang, Q.1
Lin, D.2
Schuurmans, D.3
-
39
-
-
33750246500
-
Improving parsing accuracy by combining diverse dependency parsers
-
D. Zeman and Z. Žabokrtský. 2005. Improving parsing accuracy by combining diverse dependency parsers. In Proceedings of IWPT 9, pages 171-178.
-
(2005)
Proceedings of IWPT
, vol.9
, pp. 171-178
-
-
Zeman, D.1
Žabokrtský, Z.2
-
40
-
-
78649295943
-
K-best combination of syntactic parsers
-
H. Zhang, M. Zhang, C. Tan, and H. Li. 2009. K-best combination of syntactic parsers. In Proceedings of EMNLP: Volume 3, pages 1552-1560.
-
(2009)
Proceedings of EMNLP
, vol.3
, pp. 1552-1560
-
-
Zhang, H.1
Zhang, M.2
Tan, C.3
Li, H.4
|