메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 1-12

Learning ensembles of structured prediction rules

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; FORECASTING;

EID: 84906932481     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/p14-1001     Document Type: Conference Paper
Times cited : (3)

References (40)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Leo Breiman. 1996. Bagging predictors. Machine Learning, 24(2):123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 33646407289 scopus 로고    scopus 로고
    • Discriminative reranking for natural language parsing
    • Michael Collins and Terry Koo. 2005. Discriminative reranking for natural language parsing. Computational Linguistics, 31(1):25-70.
    • (2005) Computational Linguistics , vol.31 , Issue.1 , pp. 25-70
    • Collins, M.1    Koo, T.2
  • 5
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms
    • M. Collins. 2002. Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms. In Proceedings of ACL, pages 1-8.
    • (2002) Proceedings of ACL , pp. 1-8
    • Collins, M.1
  • 6
    • 31844441189 scopus 로고    scopus 로고
    • A general regression technique for learning transductions
    • New York, NY, USA. ACM
    • C. Cortes, M. Mohri, and J. Weston. 2005. A general regression technique for learning transductions. In Proceedings of ICML 2005, pages 153-160, New York, NY, USA. ACM.
    • (2005) Proceedings of ICML 2005 , pp. 153-160
    • Cortes, C.1    Mohri, M.2    Weston, J.3
  • 9
    • 84906930422 scopus 로고    scopus 로고
    • Data-driven online to batch conversion
    • O. Dekel and Y. Singer. 2005. Data-driven online to batch conversion. In Advances in NIPS 18, pages 1207-1216.
    • (2005) Advances in NIPS , vol.18 , pp. 1207-1216
    • Dekel, O.1    Singer, Y.2
  • 10
    • 0030638031 scopus 로고    scopus 로고
    • Postprocessing system to yield reduced word error rates: Recognizer output voting error reduction (rover)
    • Santa Barbara, CA
    • Jonathan G Fiscus. 1997. Postprocessing system to yield reduced word error rates: Recognizer output voting error reduction (rover). In Proceedings of the 1997 IEEE ASRU Workshop, pages 347-354, Santa Barbara, CA.
    • (1997) Proceedings of the 1997 IEEE ASRU Workshop , pp. 347-354
    • Fiscus, J.G.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and application to boosting
    • Y. Freund and R. Schapire. 1997. A decision-theoretic generalization of on-line learning and application to boosting. Journal of Computer and System Sciences, 55(1):119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 15
    • 24644463787 scopus 로고    scopus 로고
    • Efficient algorithms for online decision problems
    • A. Kalai and S. Vempala. 2005. Efficient algorithms for online decision problems. Journal of Computer and System Sciences, 71(3):291-307.
    • (2005) Journal of Computer and System Sciences , vol.71 , Issue.3 , pp. 291-307
    • Kalai, A.1    Vempala, S.2
  • 16
    • 84870255848 scopus 로고    scopus 로고
    • Tree ensembles for predicting structured outputs
    • March
    • D. Kocev, C. Vens, J. Struyf, and S. Deroski. 2013. Tree ensembles for predicting structured outputs. Pattern Recognition, 46(3):817-833, March.
    • (2013) Pattern Recognition , vol.46 , Issue.3 , pp. 817-833
    • Kocev, D.1    Vens, C.2    Struyf, J.3    Deroski, S.4
  • 17
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • Vladmir Koltchinskii and Dmitry Panchenko. 2002. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30.
    • (2002) Annals of Statistics , pp. 30
    • Koltchinskii, V.1    Panchenko, D.2
  • 18
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML, pages 282-289.
    • (2001) Proceedings of ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 20
    • 85011913774 scopus 로고
    • From on-line to batch learning
    • N. Littlestone. 1989. From on-line to batch learning. In Proceedings of COLT 2, pages 269-284.
    • (1989) Proceedings of COLT , vol.2 , pp. 269-284
    • Littlestone, N.1
  • 25
    • 0348198473 scopus 로고    scopus 로고
    • Finite-state transducers in language and speech processing
    • Mehryar Mohri. 1997. Finite-state transducers in language and speech processing. Computational Linguistics, 23(2):269-311.
    • (1997) Computational Linguistics , vol.23 , Issue.2 , pp. 269-311
    • Mohri, M.1
  • 26
    • 34547982896 scopus 로고    scopus 로고
    • Comparison of sequence labeling algorithms and extensions
    • N. Nguyen and Y. Guo. 2007. Comparison of sequence labeling algorithms and extensions. In Proceedings of ICML, pages 681-688.
    • (2007) Proceedings of ICML , pp. 681-688
    • Nguyen, N.1    Guo, Y.2
  • 28
    • 79551488594 scopus 로고    scopus 로고
    • Products of random latent variable grammars
    • Slav Petrov. 2010. Products of random latent variable grammars. In HLT-NAACL, pages 19-27.
    • (2010) HLT-NAACL , pp. 19-27
    • Petrov, S.1
  • 30
    • 85119974562 scopus 로고    scopus 로고
    • Parser combination by reparsing
    • K. Sagae and A. Lavie. 2006. Parser combination by reparsing. In Proceedings of HLT/NAACL, pages 129-132.
    • (2006) Proceedings of HLT/NAACL , pp. 129-132
    • Sagae, K.1    Lavie, A.2
  • 31
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Robert E. Schapire and Yoram Singer. 1999. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 32
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • Robert E. Schapire and Yoram Singer. 2000. Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2-3):135-168.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 33
    • 0002595663 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. 1997. Boosting the margin: A new explanation for the effectiveness of voting methods. In ICML, pages 322-330.
    • (1997) ICML , pp. 322-330
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Sun Lee, W.4
  • 34
    • 0032661851 scopus 로고    scopus 로고
    • Linearly combining density estimators via stacking
    • July
    • Padhraic Smyth and David Wolpert. 1999. Linearly combining density estimators via stacking. Machine Learning, 36:59-83, July.
    • (1999) Machine Learning , vol.36 , pp. 59-83
    • Smyth, P.1    Wolpert, D.2
  • 35
    • 3142657664 scopus 로고    scopus 로고
    • Path kernels and multiplicative updates
    • E. Takimoto and M. K. Warmuth. 2003. Path kernels and multiplicative updates. JMLR, 4:773-818.
    • (2003) JMLR , vol.4 , pp. 773-818
    • Takimoto, E.1    Warmuth, M.K.2
  • 36
    • 84898948585 scopus 로고    scopus 로고
    • Max-margin markov networks
    • MIT Press, Cambridge, MA
    • B. Taskar, C. Guestrin, and D. Koller. 2004. Max-margin Markov networks. In Advances in NIPS 16. MIT Press, Cambridge, MA.
    • (2004) Advances in NIPS , vol.16
    • Taskar, B.1    Guestrin, C.2    Koller, D.3
  • 37
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • December
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. 2005. Large margin methods for structured and interdependent output variables. JMLR, 6:1453-1484, December.
    • (2005) JMLR , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 38
    • 84880907398 scopus 로고    scopus 로고
    • Simple training of dependency parsers via structured boosting
    • Q. Wang, D. Lin, and D. Schuurmans. 2007. Simple training of dependency parsers via structured boosting. In Proceedings of IJCAI 20, pages 1756-1762.
    • (2007) Proceedings of IJCAI , vol.20 , pp. 1756-1762
    • Wang, Q.1    Lin, D.2    Schuurmans, D.3
  • 39
    • 33750246500 scopus 로고    scopus 로고
    • Improving parsing accuracy by combining diverse dependency parsers
    • D. Zeman and Z. Žabokrtský. 2005. Improving parsing accuracy by combining diverse dependency parsers. In Proceedings of IWPT 9, pages 171-178.
    • (2005) Proceedings of IWPT , vol.9 , pp. 171-178
    • Zeman, D.1    Žabokrtský, Z.2
  • 40
    • 78649295943 scopus 로고    scopus 로고
    • K-best combination of syntactic parsers
    • H. Zhang, M. Zhang, C. Tan, and H. Li. 2009. K-best combination of syntactic parsers. In Proceedings of EMNLP: Volume 3, pages 1552-1560.
    • (2009) Proceedings of EMNLP , vol.3 , pp. 1552-1560
    • Zhang, H.1    Zhang, M.2    Tan, C.3    Li, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.