메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 62-71

Domain adaptation by constraining inter-domain variability of latent feature representation

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER FEATURE; DOMAIN ADAPTATION; FEATURE REPRESENTATION; GENERATIVE MODEL; INTER-DOMAIN; LATENT VARIABLE; MARGINAL DISTRIBUTION; SEMI-SUPERVISED; SENTIMENT CLASSIFICATION; TARGET DOMAIN; UNLABELED DATA;

EID: 84859057454     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (31)
  • 2
    • 56449121705 scopus 로고    scopus 로고
    • Justifying and generalizing contrastive divergence
    • University of Montreal, November
    • Yoshua Bengio and Olivier Delalleau. 2007. Justifying and generalizing contrastive divergence. Technical Report TR 1311, Department IRO, University of Montreal, November.
    • (2007) Technical Report TR 1311, Department IRO
    • Bengio, Y.1    Delalleau, O.2
  • 5
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation with structural correspondence learning. In Proc. of EMNLP.
    • (2006) Proc. of EMNLP
    • Blitzer, J.1    McDonald, R.2    Pereira, F.3
  • 9
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston. 2008. A unified architecture for natural language processing: Deep neural networks with multitask learning. In International Conference on Machine Learning, ICML.
    • (2008) International Conference on Machine Learning, ICML
    • Collobert, R.1    Weston, J.2
  • 11
    • 77956547444 scopus 로고    scopus 로고
    • Highperformance semi-supervised learning using discriminatively constrained generative models
    • Haifa, Israel
    • Gregory Druck and Andrew McCallum. 2010. Highperformance semi-supervised learning using discriminatively constrained generative models. In Proc. of the International Conference on Machine Learning (ICML), Haifa, Israel.
    • (2010) Proc. of the International Conference on Machine Learning (ICML)
    • Druck, G.1    McCallum, A.2
  • 13
    • 79551499233 scopus 로고    scopus 로고
    • Latent variable model of synchronous syntactic-semantic parsing for multiple languages
    • Andrea Gesmundo, James Henderson, Paola Merlo, and Ivan Titov. 2009. Latent variable model of synchronous syntactic-semantic parsing for multiple languages. In CoNLL 2009 Shared Task.
    • (2009) CoNLL 2009 Shared Task
    • Gesmundo, A.1    Henderson, J.2    Merlo, P.3    Titov, I.4
  • 14
    • 0031268341 scopus 로고    scopus 로고
    • Factorial Hidden Markov Models
    • Zoubin Ghahramani and Michael I. Jordan. 1997. Factorial hidden Markov models. Machine Learning, 29:245-273. (Pubitemid 127510040)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 245-273
    • Ghahramani, Z.1    Jordan, M.I.2
  • 15
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • DOI 10.1126/science.1127647
    • G. E. Hinton and R. R. Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science, 313:504-507. (Pubitemid 44148451)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 16
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Geoffrey E. Hinton. 2002. Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation, 14:1771-1800.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 18
    • 84860538689 scopus 로고    scopus 로고
    • Instance weighting for domain adaptation in nlp
    • Prague, Czech Republic, June. Association for Computational Linguistics
    • Jing Jiang and ChengXiang Zhai. 2007. Instance weighting for domain adaptation in nlp. In Proc. of the Annual Meeting of the ACL, pages 264-271, Prague, Czech Republic, June. Association for Computational Linguistics.
    • (2007) Proc. of the Annual Meeting of the ACL , pp. 264-271
    • Jiang, J.1    Zhai, C.X.2
  • 19
    • 77949506891 scopus 로고    scopus 로고
    • Generalized expectation criteria for semi-supervised learning with weakly labeled data
    • Gideon S. Mann and Andrew McCallum. 2010. Generalized expectation criteria for semi-supervised learning with weakly labeled data. Journal of Machine Learning Research, 11:955-984.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 955-984
    • Mann, G.S.1    McCallum, A.2
  • 22
    • 34047193519 scopus 로고    scopus 로고
    • Multi-conditional learning: Generative/discriminative training for clustering and classification
    • Andrew McCallum, Chris Pal, Greg Druck, and Xuerui Wang. 2006. Multi-conditional learning: Generative/ discriminative training for clustering and classification. In AAAI.
    • (2006) AAAI
    • McCallum, A.1    Pal, C.2    Druck, G.3    Wang, X.4
  • 25
    • 76649142894 scopus 로고    scopus 로고
    • Structural correspondence learning for parse disambiguation
    • Athens, Greece, April. Association for Computational Linguistics
    • Barbara Plank. 2009. Structural correspondence learning for parse disambiguation. In Proceedings of the Student Research Workshop at EACL 2009, pages 37-45, Athens, Greece, April. Association for Computational Linguistics.
    • (2009) Proceedings of the Student Research Workshop at EACL 2009 , pp. 37-45
    • Plank, B.1
  • 28
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • D. Rumehart and J McCelland, editors, : Foundations. MIT Press
    • Paul Smolensky. 1986. Information processing in dynamical systems: foundations of harmony theory. In D. Rumehart and J McCelland, editors, Parallel distributed processing: explorations in the microstructures of cognition, volume 1 : Foundations, pages 194-281. MIT Press.
    • (1986) Parallel Distributed Processing: Explorations in the Microstructures of Cognition , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 30
    • 80053357914 scopus 로고    scopus 로고
    • Fast and robust multilingual dependency parsing with a generative latent variable model
    • Prague, Czech Republic
    • Ivan Titov and James Henderson. 2007b. Fast and robust multilingual dependency parsing with a generative latent variable model. In Proc. of the CoNLL sharedtask, Prague, Czech Republic.
    • (2007) Proc. of the CoNLL Sharedtask
    • Titov, I.1    Henderson, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.