-
1
-
-
21844444960
-
Online choice of active learning algorithms
-
Baram, Y., El-Yaniv, R., Luz, K.: Online choice of active learning algorithms. Journal of Machine Learning Research (JMLR) 5, 255-291 (2004)
-
(2004)
Journal of Machine Learning Research (JMLR)
, vol.5
, pp. 255-291
-
-
Baram, Y.1
El-Yaniv, R.2
Luz, K.3
-
2
-
-
78149302207
-
What does classifying more than 10,000 image categories tell us?
-
Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V Springer, Heidelberg
-
Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell us? In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 71-84. Springer, Heidelberg (2010)
-
(2010)
LNCS
, vol.6315
, pp. 71-84
-
-
Deng, J.1
Berg, A.C.2
Li, K.3
Fei-Fei, L.4
-
3
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: Conference on Computer Vision and Pattern Recognition, CVPR (2009)
-
Conference on Computer Vision and Pattern Recognition, CVPR (2009)
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
4
-
-
84866645923
-
Ralf: A reinforced active learning formulation for object class recognition
-
Ebert, S., Fritz, M., Schiele, B.: Ralf: A reinforced active learning formulation for object class recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3626-3633 (2012)
-
(2012)
Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 3626-3633
-
-
Ebert, S.1
Fritz, M.2
Schiele, B.3
-
5
-
-
84875877676
-
Rapid uncertainty computation with gaussian processes and histogram intersection kernels
-
Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II Springer, Heidelberg
-
Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Rapid uncertainty computation with gaussian processes and histogram intersection kernels. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 511-524. Springer, Heidelberg (2013)
-
(2013)
LNCS
, vol.7725
, pp. 511-524
-
-
Freytag, A.1
Rodner, E.2
Bodesheim, P.3
Denzler, J.4
-
6
-
-
84886390740
-
Labeling examples that matter: Relevance-based active learning with gaussian processes
-
Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013 Springer, Heidelberg
-
Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Labeling examples that matter: Relevance-based active learning with gaussian processes. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 282-291. Springer, Heidelberg (2013)
-
(2013)
LNCS
, vol.8142
, pp. 282-291
-
-
Freytag, A.1
Rodner, E.2
Bodesheim, P.3
Denzler, J.4
-
7
-
-
84911449570
-
Nonparametric part transfer for fine-grained recognition
-
accepted for publication
-
Göring, C., Rodner, E., Freytag, A., Denzler, J.: Nonparametric part transfer for fine-grained recognition. In: Conference on Computer Vision and Pattern Recognition, CVPR (accepted for publication, 2014)
-
(2014)
Conference on Computer Vision and Pattern Recognition, CVPR
-
-
Göring, C.1
Rodner, E.2
Freytag, A.3
Denzler, J.4
-
9
-
-
84867855773
-
Discriminative decorrelation for clustering and classfication
-
Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV Springer, Heidelberg
-
Hariharan, B., Malik, J., Ramanan, D.: Discriminative decorrelation for clustering and classfication. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 459-472. Springer, Heidelberg (2012)
-
(2012)
LNCS
, vol.7575
, pp. 459-472
-
-
Hariharan, B.1
Malik, J.2
Ramanan, D.3
-
10
-
-
77951294698
-
Gaussian processes for object categorization
-
Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Gaussian processes for object categorization. International Journal of Computer Vision (IJCV) 88, 169-188 (2010)
-
(2010)
International Journal of Computer Vision (IJCV)
, vol.88
, pp. 169-188
-
-
Kapoor, A.1
Grauman, K.2
Urtasun, R.3
Darrell, T.4
-
11
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, NIPS (2012)
-
(2012)
Advances in Neural Information Processing Systems, NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
12
-
-
0001406710
-
Some theorems in least squares
-
Plackett, R.L.: Some theorems in least squares. Biometrika 37(1/2), 149-157 (1950)
-
(1950)
Biometrika
, vol.37
, Issue.1-2
, pp. 149-157
-
-
Plackett, R.L.1
-
14
-
-
84867862792
-
Large-scale gaussian process classification with flexible adaptive histogram kernels
-
Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV Springer, Heidelberg
-
Rodner, E., Freytag, A., Bodesheim, P., Denzler, J.: Large-scale gaussian process classification with flexible adaptive histogram kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 85-98. Springer, Heidelberg (2012)
-
(2012)
LNCS
, vol.7575
, pp. 85-98
-
-
Rodner, E.1
Freytag, A.2
Bodesheim, P.3
Denzler, J.4
-
15
-
-
84872513695
-
One-class classification for anomaly detection in wire ropes with gaussian processes in a few lines of code
-
Rodner, E., Wacker, E.S., Kemmler, M., Denzler, J.: One-class classification for anomaly detection in wire ropes with gaussian processes in a few lines of code. In: Conference on Machine Vision Applications (MVA), pp. 219-222 (2011)
-
(2011)
Conference on Machine Vision Applications (MVA)
, pp. 219-222
-
-
Rodner, E.1
Wacker, E.S.2
Kemmler, M.3
Denzler, J.4
-
16
-
-
0442319140
-
Toward optimal active learning through sampling estimation of error reduction
-
Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: International Conference on Machine Learning (ICML), pp. 441-448 (2001)
-
(2001)
International Conference on Machine Learning (ICML)
, pp. 441-448
-
-
Roy, N.1
McCallum, A.2
-
18
-
-
0003408420
-
-
The MIT Press, Cambridge
-
Schölkopf, B., Smola, A.J.: Learning with kernels: Support Vector Machines, Regularization, Optimization, and beyond. Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2002)
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning
-
-
Schölkopf, B.1
Smola, A.J.2
-
19
-
-
80053375448
-
An analysis of active learning strategies for sequence labeling tasks
-
Association for Computational Linguistics
-
Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1070-1079. Association for Computational Linguistics (2008)
-
(2008)
Conference on Empirical Methods in Natural Language Processing (EMNLP)
, pp. 1070-1079
-
-
Settles, B.1
Craven, M.2
-
20
-
-
85162065706
-
Multiple-instance active learning
-
MIT Press
-
Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 1289-1296. MIT Press (2008)
-
(2008)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1289-1296
-
-
Settles, B.1
Craven, M.2
Ray, S.3
-
21
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. Journal of Machine Learning Research (JMLR) 2, 45-66 (2002)
-
(2002)
Journal of Machine Learning Research (JMLR)
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
22
-
-
84866706762
-
Active learning for semantic segmentation with expected change
-
Vezhnevets, A., Buhmann, J.M., Ferrari, V.: Active learning for semantic segmentation with expected change. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3162-3169 (2012)
-
(2012)
Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 3162-3169
-
-
Vezhnevets, A.1
Buhmann, J.M.2
Ferrari, V.3
-
23
-
-
14344254639
-
Combining active learning and semi-supervised learning using gaussian fields and harmonic functions
-
Zhu, X., Lafferty, J., Ghahramani, Z.: Combining active learning and semi-supervised learning using gaussian fields and harmonic functions. In: Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining (ICML-WS), pp. 58-65 (2003)
-
(2003)
Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining (ICML-WS)
, pp. 58-65
-
-
Zhu, X.1
Lafferty, J.2
Ghahramani, Z.3
|