메뉴 건너뛰기




Volumn 24, Issue 3, 2013, Pages

Fault diagnosis of bearings based on a sensitive feature decoupling technique

Author keywords

bearings; fault diagnosis; sensitive feature decoupling; wavelet packet transform

Indexed keywords

BEARINGS (STRUCTURAL); FAILURE ANALYSIS; LEARNING SYSTEMS;

EID: 84874337245     PISSN: 09570233     EISSN: 13616501     Source Type: Journal    
DOI: 10.1088/0957-0233/24/3/035602     Document Type: Article
Times cited : (12)

References (33)
  • 1
    • 0029404270 scopus 로고
    • Motor bearing damage detection using stator current monitoring
    • 10.1109/28.475697 0093-9994
    • Schoen R R and Habetler T G 1995 Motor bearing damage detection using stator current monitoring IEEE Trans. Indust. Appl. 31 1274-9
    • (1995) IEEE Trans. Indust. Appl. , vol.31 , pp. 1274-1279
    • Schoen, R.R.1    Habetler, T.G.2
  • 3
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • 10.1016/j.ymssp.2005.09.012 0888-3270
    • Jardine A K S, Lin D and Banjevic D 2006 A review on machinery diagnostics and prognostics implementing condition-based maintenance Mech. Syst. Signal Process. 20 1483-510
    • (2006) Mech. Syst. Signal Process. , vol.20 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 4
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • 10.1016/j.ymssp.2006.12.007 0888-3270
    • Widodo A and Yang B 2007 Support vector machine in machine condition monitoring and fault diagnosis Mech. Syst. Signal Process. 21 2560-74
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.2
  • 5
    • 30344454699 scopus 로고    scopus 로고
    • Vibration monitoring for defect diagnosis of rolling element bearings as a predictive maintenance tool: Comprehensive case studies
    • 10.1016/j.ndteint.2005.08.008 0963-8695
    • Orhan S, Akturk N and Celik V 2006 Vibration monitoring for defect diagnosis of rolling element bearings as a predictive maintenance tool: comprehensive case studies NDT&E Int. 39 293-8
    • (2006) NDT&E Int. , vol.39 , pp. 293-298
    • Orhan, S.1    Akturk, N.2    Celik, V.3
  • 6
    • 0035456236 scopus 로고    scopus 로고
    • The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals
    • 10.1006/mssp.2001.1415 0888-3270
    • Randall R B, Antoni J and Chobsaard S 2001 The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals Mech. Syst. Signal Process. 15 945-62
    • (2001) Mech. Syst. Signal Process. , vol.15 , pp. 945-962
    • Randall, R.B.1    Antoni, J.2    Chobsaard, S.3
  • 7
    • 0942267826 scopus 로고    scopus 로고
    • A estimation of the running speed and bearing defect frequencies of an induction motor from vibration data
    • 10.1016/S0888-3270(03)00052-9 0888-3270
    • Ocak H and Oparo K 2004 A estimation of the running speed and bearing defect frequencies of an induction motor from vibration data Mech. Syst. Signal Process. 18 515-33
    • (2004) Mech. Syst. Signal Process. , vol.18 , pp. 515-533
    • Ocak, H.1    Oparo, K.2
  • 8
    • 0343240948 scopus 로고
    • Early detection of gear failure by vibration analysis: I. Calculation of the time-frequency distribution
    • 10.1006/mssp.1993.1008 0888-3270
    • Wang W J and McFadden P D 1993 Early detection of gear failure by vibration analysis: I. Calculation of the time-frequency distribution Mech. Syst. Signal Process. 7 193-203
    • (1993) Mech. Syst. Signal Process. , vol.7 , pp. 193-203
    • Wang, W.J.1    McFadden, P.D.2
  • 9
    • 79957439082 scopus 로고    scopus 로고
    • Detection and diagnosis of bearing and cutting tool faults using hidden Markov models
    • 10.1016/j.ymssp.2011.01.013 0888-3270
    • Boutros T and Liang M 2011 Detection and diagnosis of bearing and cutting tool faults using hidden Markov models Mech. Syst. Signal Process. 25 2102-24
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 2102-2124
    • Boutros, T.1    Liang, M.2
  • 10
    • 57349137762 scopus 로고    scopus 로고
    • Fault severity assessment for rolling element bearings using the Lempel-Ziv complexity and continuous wavelet transform
    • 10.1016/j.jsv.2008.07.011 0022-460X
    • Hong H and Liang M 2009 Fault severity assessment for rolling element bearings using the Lempel-Ziv complexity and continuous wavelet transform J. Sound Vib. 320 452-68
    • (2009) J. Sound Vib. , vol.320 , pp. 452-468
    • Hong, H.1    Liang, M.2
  • 11
    • 33750617897 scopus 로고    scopus 로고
    • A sliding window feature extraction method for rotating machinery based on the lifting scheme
    • 10.1016/j.jsv.2006.07.037 0022-460X
    • Duan C D, He Z J and Jiang H K 2007 A sliding window feature extraction method for rotating machinery based on the lifting scheme J. Sound Vib. 299 774-85
    • (2007) J. Sound Vib. , vol.299 , pp. 774-785
    • Duan, C.D.1    He, Z.J.2    Jiang, H.K.3
  • 12
    • 55449086893 scopus 로고    scopus 로고
    • Fault diagnosis and condition surveillance for plant rotating machinery using partially-linearized neural network
    • 10.1016/j.cie.2008.03.002 0360-8352
    • Mitoma T, Wang H and Chen P 2008 Fault diagnosis and condition surveillance for plant rotating machinery using partially-linearized neural network Comput. Indust. Eng. 55 783-94
    • (2008) Comput. Indust. Eng. , vol.55 , pp. 783-794
    • Mitoma, T.1    Wang, H.2    Chen, P.3
  • 13
    • 27544511788 scopus 로고    scopus 로고
    • New statistical moments for the detection of defects in rolling element bearings
    • 10.1007/s00170-004-2109-4 0268-3768
    • Niu X, Zhu L and Ding H 2005 New statistical moments for the detection of defects in rolling element bearings Int. J. Adv. Manuf. Technol. 26 1268-74
    • (2005) Int. J. Adv. Manuf. Technol. , vol.26 , pp. 1268-1274
    • Niu, X.1    Zhu, L.2    Ding, H.3
  • 14
    • 79952763609 scopus 로고    scopus 로고
    • Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings
    • 0957-0233 045708
    • Hao R J, Peng Z, Feng Z P and Chu F L 2011 Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings Meas. Sci. Technol. 22 045708
    • (2011) Meas. Sci. Technol. , vol.22
    • Hao, R.J.1    Peng, Z.2    Feng, Z.P.3    Chu, F.L.4
  • 15
    • 70350688111 scopus 로고    scopus 로고
    • Parameter-free bearing fault detection based on maximum likelihood estimation and differentiation
    • 0957-0233 065102
    • Bozchalooi I S and Liang M 2009 Parameter-free bearing fault detection based on maximum likelihood estimation and differentiation Meas. Sci. Technol. 20 065102
    • (2009) Meas. Sci. Technol. , vol.20
    • Bozchalooi, I.S.1    Liang, M.2
  • 16
    • 34247164154 scopus 로고    scopus 로고
    • Fault detection in a ball bearing system using minimum variance cepstrum
    • 10.1088/0957-0233/18/5/031 0957-0233
    • Choi Y C and Kim Y H 2007 Fault detection in a ball bearing system using minimum variance cepstrum Meas. Sci. Technol. 18 1433-40
    • (2007) Meas. Sci. Technol. , vol.18 , pp. 1433-1440
    • Choi, Y.C.1    Kim, Y.H.2
  • 17
    • 79960043301 scopus 로고    scopus 로고
    • Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models
    • 10.1016/j.ymssp.2011.02.006 0888-3270
    • Yu J B 2011 Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models Mech. Syst. Signal Process. 25 2573-88
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 2573-2588
    • Yu, J.B.1
  • 19
    • 0034206997 scopus 로고    scopus 로고
    • Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis
    • 10.1006/jsvi.2000.2864 0022-460X
    • Lin J and Qu L S 2000 Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis J. Sound Vib. 234 135-48
    • (2000) J. Sound Vib. , vol.234 , pp. 135-148
    • Lin, J.1    Qu, L.S.2
  • 20
    • 0029307534 scopus 로고
    • Denoising by soft-thresholding
    • 10.1109/18.382009 0018-9448
    • Donoho D L 1995 Denoising by soft-thresholding IEEE Trans. Inform. Theory 41 613-27
    • (1995) IEEE Trans. Inform. Theory , vol.41 , pp. 613-627
    • Donoho, D.L.1
  • 21
    • 0041958932 scopus 로고
    • Ideal spatial adaptation via wavelet shrinkage
    • 10.1093/biomet/81.3.425 0006-3444
    • Donoho D L and Jonestone I M 1994 Ideal spatial adaptation via wavelet shrinkage Biometrika 81 425-55
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.L.1    Jonestone, I.M.2
  • 22
    • 2942525326 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on wavelet transform and fuzzy inference
    • 10.1016/S0888-3270(03)00077-3 0888-3270
    • Lou X S and Loparo K A 2004 Bearing fault diagnosis based on wavelet transform and fuzzy inference Mech. Syst. Signal Process. 18 1077-95
    • (2004) Mech. Syst. Signal Process. , vol.18 , pp. 1077-1095
    • Lou, X.S.1    Loparo, K.A.2
  • 23
    • 38849154591 scopus 로고    scopus 로고
    • Wavelet spectrum analysis for bearing fault diagnostics
    • 0957-0233 015105
    • Liu J, Wang W, Golnaraghi F and Liu K 2008 Wavelet spectrum analysis for bearing fault diagnostics Meas. Sci. Technol. 19 015105
    • (2008) Meas. Sci. Technol. , vol.19
    • Liu, J.1    Wang, W.2    Golnaraghi, F.3    Liu, K.4
  • 24
    • 0035273597 scopus 로고    scopus 로고
    • Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings
    • 10.1006/mssp.2000.1330 0888-3270
    • Rubini R and Meneghetti U 2001 Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings Mech. Syst. Signal Process. 15 287-302
    • (2001) Mech. Syst. Signal Process. , vol.15 , pp. 287-302
    • Rubini, R.1    Meneghetti, U.2
  • 25
    • 33845328764 scopus 로고    scopus 로고
    • Bearing fault detection using wavelet packet transform of induction motor stator current
    • 10.1016/j.triboint.2006.07.002 0301-679X
    • Zarei J and Poshtan J 2007 Bearing fault detection using wavelet packet transform of induction motor stator current Tribol. Int. 40 763-9
    • (2007) Tribol. Int. , vol.40 , pp. 763-769
    • Zarei, J.1    Poshtan, J.2
  • 26
    • 58349111323 scopus 로고    scopus 로고
    • An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network
    • 10.1016/j.eswa.2008.03.008 0957-4174
    • Wu J D and Liu C H 2009 An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network Expert Syst. Appl. 36 4278-86
    • (2009) Expert Syst. Appl. , vol.36 , pp. 4278-4286
    • Wu, J.D.1    Liu, C.H.2
  • 27
    • 79953838303 scopus 로고    scopus 로고
    • Application of an improved kurtogram method for fault diagnosis of rolling element bearings
    • 10.1016/j.ymssp.2010.12.011 0888-3270
    • Lei Y G, Lin J, He Z J and Zi Y Y 2011 Application of an improved kurtogram method for fault diagnosis of rolling element bearings Mech. Syst. Signal Process. 25 1738-49
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 1738-1749
    • Lei, Y.G.1    Lin, J.2    He, Z.J.3    Zi, Y.Y.4
  • 28
    • 33846837272 scopus 로고    scopus 로고
    • Fault diagnostics based on particle swarm optimization and support vector machines
    • 10.1016/j.ymssp.2006.07.008 0888-3270
    • Yuan S F and Chu F L 2007 Fault diagnostics based on particle swarm optimization and support vector machines Mech. Syst. Signal Process. 21 1787-98
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 1787-1798
    • Yuan, S.F.1    Chu, F.L.2
  • 29
    • 3943082051 scopus 로고    scopus 로고
    • Pattern recognition for automatic machinery fault diagnosis
    • 10.1115/1.1687391 0739-3717
    • Sun Q, Chen P, Zhang D and Xi F 2004 Pattern recognition for automatic machinery fault diagnosis Trans. ASME J. Vib. Acoust. 126 307-16
    • (2004) Trans. ASME J. Vib. Acoust. , vol.126 , pp. 307-316
    • Sun, Q.1    Chen, P.2    Zhang, D.3    Xi, F.4
  • 30
    • 4344676394 scopus 로고    scopus 로고
    • Best basis-based intelligent machine fault diagnosis
    • 10.1016/j.ymssp.2004.06.001 0888-3270
    • Zhang S, Mathew J, Ma L and Sun Y 2005 Best basis-based intelligent machine fault diagnosis Mech. Syst. Signal Process. 19 357-70
    • (2005) Mech. Syst. Signal Process. , vol.19 , pp. 357-370
    • Zhang, S.1    Mathew, J.2    Ma, L.3    Sun, Y.4
  • 31
    • 64049098473 scopus 로고    scopus 로고
    • Application of an intelligent classification method to mechanical fault diagnosis
    • 10.1016/j.eswa.2009.01.065 0957-4174
    • Lei Y G, He Z J and Zi Y Y 2009 Application of an intelligent classification method to mechanical fault diagnosis Expert Syst. Appl. 36 9941-8
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9941-9948
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 32
    • 77953098563 scopus 로고    scopus 로고
    • Abnormal detection through a Bayesian support vector machine
    • 10.1109/TR.2010.2048740
    • Sotiris Vasilis A, Peter T and Michael P 2010 Abnormal detection through a Bayesian support vector machine IEEE Trans. Reliab. 277-86
    • (2010) IEEE Trans. Reliab. , pp. 277-286
    • Sotiris Vasilis, A.1    Peter, T.2    Michael, P.3
  • 33
    • 0036532606 scopus 로고    scopus 로고
    • Rolling element bearing fault diagnosis using wavelet packets
    • 10.1016/S0963-8695(01)00044-5 0963-8695
    • Nikolaou N G and Antoniadis I A 2002 Rolling element bearing fault diagnosis using wavelet packets NDT&E Int. 35 197-205
    • (2002) NDT&E Int. , vol.35 , pp. 197-205
    • Nikolaou, N.G.1    Antoniadis, I.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.