메뉴 건너뛰기




Volumn 8, Issue 4, 2008, Pages 1365-1380

Feature-based classifier ensembles for diagnosing multiple faults in rotating machinery

Author keywords

Ensemble; Fault diagnosis; Feature selection; Multi objective genetic algorithms; Rotating machinery

Indexed keywords

CLASSIFIERS; FEATURE EXTRACTION; FORECASTING; GENETIC ALGORITHMS; HEALTH; LEARNING SYSTEMS; ROTATING MACHINERY; ROTATION;

EID: 50149090206     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2007.10.005     Document Type: Article
Times cited : (52)

References (52)
  • 3
    • 0032677549 scopus 로고    scopus 로고
    • Classification techniques for fault detection and diagnosis of an air-handling unit
    • House J.M., Lee W.Y., and Shin D.R. Classification techniques for fault detection and diagnosis of an air-handling unit. ASHRAE Trans. 105 1 (1999) 1987-1997
    • (1999) ASHRAE Trans. , vol.105 , Issue.1 , pp. 1987-1997
    • House, J.M.1    Lee, W.Y.2    Shin, D.R.3
  • 4
    • 0030289578 scopus 로고    scopus 로고
    • PeakVue analysis-new methodology for bearing fault detection
    • Robinson J.C., Canada R.G., and Piety K.R. PeakVue analysis-new methodology for bearing fault detection. Sound Vib. 30 11 (1996) 22-25
    • (1996) Sound Vib. , vol.30 , Issue.11 , pp. 22-25
    • Robinson, J.C.1    Canada, R.G.2    Piety, K.R.3
  • 7
    • 0030217597 scopus 로고    scopus 로고
    • Validation of finite element models for noise/vibration/harshness simulation
    • Donley M., Stokes W., Jeong G.S., Suh K.K., and Jung S.G. Validation of finite element models for noise/vibration/harshness simulation. Sound Vib. 30 8 (1996) 18-23
    • (1996) Sound Vib. , vol.30 , Issue.8 , pp. 18-23
    • Donley, M.1    Stokes, W.2    Jeong, G.S.3    Suh, K.K.4    Jung, S.G.5
  • 8
    • 0026376914 scopus 로고
    • An adaptive back-propagation through time training algorithm for a neural controller
    • Chow M.-Y., and Yee S.-O. An adaptive back-propagation through time training algorithm for a neural controller. Proc. IEEE Int. Symp. Intell. Control (1991) 170-175
    • (1991) Proc. IEEE Int. Symp. Intell. Control , pp. 170-175
    • Chow, M.-Y.1    Yee, S.-O.2
  • 9
    • 0344871180 scopus 로고    scopus 로고
    • Motor incipient fault detection using artificial neural network and fuzzy logic technologies
    • Chapman and Hall, London, UK
    • Chow M.-Y., Lee Y.-S., and Trussell H.J. Motor incipient fault detection using artificial neural network and fuzzy logic technologies. Computer Aided Maintenance. Methodology and Practices (1996), Chapman and Hall, London, UK
    • (1996) Computer Aided Maintenance. Methodology and Practices
    • Chow, M.-Y.1    Lee, Y.-S.2    Trussell, H.J.3
  • 11
    • 50149121556 scopus 로고    scopus 로고
    • E. Zio, G. Gola, 2007, A neuro-fuzzy technique for fault diagnosis and its application to rotating machinery, Reliabil. Eng. Syst. Saf. (RESS), in press.
    • E. Zio, G. Gola, 2007, A neuro-fuzzy technique for fault diagnosis and its application to rotating machinery, Reliabil. Eng. Syst. Saf. (RESS), in press.
  • 13
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Tsymbal A., Pechenizkiy M., and Cunningham P. Diversity in search strategies for ensemble feature selection. Inf. Fus. (2005)
    • (2005) Inf. Fus.
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 15
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • Chandra A., and Yao X. Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing 69 (2006) 686-700
    • (2006) Neurocomputing , vol.69 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 16
    • 0036146402 scopus 로고    scopus 로고
    • Lung cancer cell identification based on artificial neural network ensembles
    • Zhou Z.-H., Jiang Y., Yang Y.-B., and Chen S.-F. Lung cancer cell identification based on artificial neural network ensembles. Artif. Intell. Med. 24 1 (2002)
    • (2002) Artif. Intell. Med. , vol.24 , Issue.1
    • Zhou, Z.-H.1    Jiang, Y.2    Yang, Y.-B.3    Chen, S.-F.4
  • 17
    • 0003912827 scopus 로고
    • Adaptation in natural and artificial systems: an introductory analysis with application to biology
    • MIT Press
    • Holland J.H. Adaptation in natural and artificial systems: an introductory analysis with application to biology. Control and Artificial Intelligence. 4th ed. (1975), MIT Press
    • (1975) Control and Artificial Intelligence. 4th ed.
    • Holland, J.H.1
  • 22
    • 85057372026 scopus 로고    scopus 로고
    • Statistical data mining with informational complexity and genetic algorithm
    • Bozdogan H. (Ed), CRC Press
    • Bozdogan H. Statistical data mining with informational complexity and genetic algorithm. In: Bozdogan H. (Ed). Statistical Data Mining and Knowledge Discovery (2003), CRC Press 29
    • (2003) Statistical Data Mining and Knowledge Discovery , pp. 29
    • Bozdogan, H.1
  • 23
    • 0343073710 scopus 로고
    • Development of genetic optimization tools for multi-objective optimization problems in CACSD
    • The Institution of Electrical Engineers. Digest No. 1992/106 3/1-3/6
    • Chipperfield A.J., Fonseca C.M., and Fleming P.J. Development of genetic optimization tools for multi-objective optimization problems in CACSD. IEE Colloquium on Genetic Algorithms for Control Systems Engineering. The Institution of Electrical Engineers. Digest No. 1992/106 (1992) 3/1-3/6
    • (1992) IEE Colloquium on Genetic Algorithms for Control Systems Engineering
    • Chipperfield, A.J.1    Fonseca, C.M.2    Fleming, P.J.3
  • 25
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Yang J., and Honavar V. Feature subset selection using a genetic algorithm. IEEE Intell. Syst. Appl. 13 2 (1998) 44-49
    • (1998) IEEE Intell. Syst. Appl. , vol.13 , Issue.2 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 29
    • 50149122395 scopus 로고    scopus 로고
    • L.I. Kuncheva, C.J. Whitaker, Ten measures of diversity in classifier ensembles: limits for two classifiers, A DERA/IEE Workshop on Intelligent Sensor Processing (Ref. No. 2001/050), 2001, pp. 10/1-10/10.
    • L.I. Kuncheva, C.J. Whitaker, Ten measures of diversity in classifier ensembles: limits for two classifiers, A DERA/IEE Workshop on Intelligent Sensor Processing (Ref. No. 2001/050), 2001, pp. 10/1-10/10.
  • 31
    • 84857478359 scopus 로고    scopus 로고
    • A feature selection approach based on principal component analysis and synaptic weights for mechanical fault diagnosis
    • Kolowrocki (Ed), Taylor and Francis Group, London, UK
    • Kilundu B., and Dehombreux P. A feature selection approach based on principal component analysis and synaptic weights for mechanical fault diagnosis. In: Kolowrocki (Ed). Advances in Safety and Reliability (2005), Taylor and Francis Group, London, UK
    • (2005) Advances in Safety and Reliability
    • Kilundu, B.1    Dehombreux, P.2
  • 32
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • Tumer K., and Ghosh J. Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recog. 29 2 (1996) 341-348
    • (1996) Pattern Recog. , vol.29 , Issue.2 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2
  • 33
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Krogh A., and Vedelsby J. Neural network ensembles, cross validation, and active learning. Neural Inf. Process. Syst. 7 (1995) 231-238
    • (1995) Neural Inf. Process. Syst. , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 34
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: an empirical study
    • Opitz D., and Maclin R. Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11 (1999) 169-198
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 35
    • 85156192015 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neural-network ensemble
    • Opitz D.W., and Shavlik J.W. Generating accurate and diverse members of a neural-network ensemble. Neural Inf. Process. Syst. 8 (1996) 535-541
    • (1996) Neural Inf. Process. Syst. , vol.8 , pp. 535-541
    • Opitz, D.W.1    Shavlik, J.W.2
  • 36
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: four current directions
    • Dietterich T.G. Machine-learning research: four current directions. AI Mag. 18 4 (1998) 97-136
    • (1998) AI Mag. , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 38
    • 84865801454 scopus 로고    scopus 로고
    • Ensembles of learning machines
    • Tagliaferri R., and Marinaro M. (Eds), Springer-Verlag
    • Valentini G., and Masulli F. Ensembles of learning machines. In: Tagliaferri R., and Marinaro M. (Eds). Neural Nets WIRN Vietri-2002 (LNCS 2486) (2002), Springer-Verlag 3-19
    • (2002) Neural Nets WIRN Vietri-2002 (LNCS 2486) , pp. 3-19
    • Valentini, G.1    Masulli, F.2
  • 39
    • 84901459245 scopus 로고    scopus 로고
    • Pareto neuro-evolution: constructing ensemble of neural networks using multi-objective optimization
    • IEEE Press
    • Abbass H.A. Pareto neuro-evolution: constructing ensemble of neural networks using multi-objective optimization. The IEEE 2003 Conference on Evolutionary Computation, vol. 3 (2003), IEEE Press 2074-2080
    • (2003) The IEEE 2003 Conference on Evolutionary Computation, vol. 3 , pp. 2074-2080
    • Abbass, H.A.1
  • 40
    • 50149121995 scopus 로고    scopus 로고
    • A. Chandra, X. Yao, Multi-Objective Ensemble Construction, Learning and Evolution, available at http://dbkgroup.org/knowles/MPSN3/mpsn3chandra.pdf.
    • A. Chandra, X. Yao, Multi-Objective Ensemble Construction, Learning and Evolution, available at http://dbkgroup.org/knowles/MPSN3/mpsn3chandra.pdf.
  • 41
    • 33746363218 scopus 로고    scopus 로고
    • Selecting features for nuclear transients classification by means of genetic algorithms
    • Zio E., Baraldi P., and Pedroni N. Selecting features for nuclear transients classification by means of genetic algorithms. IEEE Trans. Nucl. Sci. 53 3 (Part 3) (2006) 1479-1493
    • (2006) IEEE Trans. Nucl. Sci. , vol.53 , Issue.3 PART 3 , pp. 1479-1493
    • Zio, E.1    Baraldi, P.2    Pedroni, N.3
  • 43
    • 0037403098 scopus 로고    scopus 로고
    • Feature selection based on a modified fuzzy c-means algorithm with supervision
    • Marcelloni F. Feature selection based on a modified fuzzy c-means algorithm with supervision. Inf. Sci. 151 (2003) 201-256
    • (2003) Inf. Sci. , vol.151 , pp. 201-256
    • Marcelloni, F.1
  • 44
    • 50149105441 scopus 로고    scopus 로고
    • A. Chandra, Evolutionary approach to tackling the trade-off between diversity and accuracy in neural network ensembles, Technical report, School of Computer Science, The University of Birmingham, UK, April 2004.
    • A. Chandra, Evolutionary approach to tackling the trade-off between diversity and accuracy in neural network ensembles, Technical report, School of Computer Science, The University of Birmingham, UK, April 2004.
  • 46
    • 50149102174 scopus 로고    scopus 로고
    • Feature selection for transients classification by a niched pareto genetic algorithm
    • Ruan D., D'Hondt P., Fantoni P., Cock M.D., Nachtegael M., and Kerre E.E. (Eds)
    • Zio E., Baraldi P., and Pedroni N. Feature selection for transients classification by a niched pareto genetic algorithm. In: Ruan D., D'Hondt P., Fantoni P., Cock M.D., Nachtegael M., and Kerre E.E. (Eds). Applied Artificial Intelligence: Proceeding of the 7th International Flins Conference (2006) 938-945
    • (2006) Applied Artificial Intelligence: Proceeding of the 7th International Flins Conference , pp. 938-945
    • Zio, E.1    Baraldi, P.2    Pedroni, N.3
  • 47
    • 0002629429 scopus 로고
    • An overview of evolutionary algorithms in multiobjective optimization
    • Fonseca P.M., and Fleming P.J. An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3 1 (1995) 1-16
    • (1995) Evol. Comput. , vol.3 , Issue.1 , pp. 1-16
    • Fonseca, P.M.1    Fleming, P.J.2
  • 48
    • 0000294949 scopus 로고
    • Application of genetic algorithms to task planning and learning
    • Männer R., and Manderick B. (Eds), North-Holland, Amsterdam, The Netherlands
    • Jakob W.D., Gorges-Schleuter M., and Blume C. Application of genetic algorithms to task planning and learning. In: Männer R., and Manderick B. (Eds). Parallel Problem Solving from Nature vol. 2 (1992), North-Holland, Amsterdam, The Netherlands 291-300
    • (1992) Parallel Problem Solving from Nature , vol.2 , pp. 291-300
    • Jakob, W.D.1    Gorges-Schleuter, M.2    Blume, C.3
  • 49
    • 0032141635 scopus 로고    scopus 로고
    • A multi-objective genetic local search algorithm and its application to flowshop scheduling
    • Ishibuchi H., and Murata T. A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C: Appl. ev. 28 3 (1998)
    • (1998) IEEE Trans. Syst. Man Cybern. Part C: Appl. ev. , vol.28 , Issue.3
    • Ishibuchi, H.1    Murata, T.2
  • 51
    • 50149083471 scopus 로고    scopus 로고
    • E. Zitzler, Evolutionary algorithms for multiobjective optimization: methods and applications, PhD Dissertation, Swiss Federal Inst. Technol., Zurich, 1999.
    • E. Zitzler, Evolutionary algorithms for multiobjective optimization: methods and applications, PhD Dissertation, Swiss Federal Inst. Technol., Zurich, 1999.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.