메뉴 건너뛰기




Volumn 99, Issue 468, 2004, Pages 1092-1107

Local global neural networks: A new approach for nonlinear time series modeling

Author keywords

Model building; Model identifiability; Neural network; Nonlinear model; Parameter estimation; Sunspot number; Time series

Indexed keywords


EID: 10844281822     PISSN: 01621459     EISSN: None     Source Type: Journal    
DOI: 10.1198/016214504000001691     Document Type: Article
Times cited : (29)

References (63)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974), A New Look at the Statistical Model Identification, IEEE Transactions on Automatic Control, 19, 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0001627244 scopus 로고
    • Identification of nonlinear time series: First-order characterization and order determination
    • Auestad, B., and Tjøstheim, D. (1990), Identification of Nonlinear Time Series: First-Order Characterization and Order Determination, Biometrika, 77, 669-687.
    • (1990) Biometrika , vol.77 , pp. 669-687
    • Auestad, B.1    Tjøstheim, D.2
  • 4
    • 10844224864 scopus 로고    scopus 로고
    • Mixtures-of-experts of generalized time series: Asymptotic normality and model specification
    • University of British Columbia and Northwestern University
    • _ (2002b), Mixtures-of-Experts of Generalized Time Series: Asymptotic Normality and Model Specification, technical report, University of British Columbia and Northwestern University.
    • (2002) Technical Report
  • 5
    • 84981411999 scopus 로고
    • Threshold variable selection in open-loop threshold autoregressive models
    • Chen, R. (1995), Threshold Variable Selection in Open-Loop Threshold Autoregressive Models, Journal of Time Series Analysis, 16, 461-481.
    • (1995) Journal of Time Series Analysis , vol.16 , pp. 461-481
    • Chen, R.1
  • 7
    • 0024861871 scopus 로고
    • Approximation by superposition of sigmoidal functions
    • Cybenko, G. (1989), Approximation by Superposition of Sigmoidal Functions, Mathematics of Control, Signals, and Systems, 2, 303-314.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 10
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi, K. (1989), On the Approximate Realization of Continuous Mappings by Neural Networks, Neural Networks, 2, 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 11
    • 0026449851 scopus 로고
    • On learning the derivatives of an unknown mapping with multilayer feedforward networks
    • Gallant, A. R., and White, H. (1992), On Learning the Derivatives of an Unknown Mapping With Multilayer Feedforward Networks, Neural Networks, 5, 129-138.
    • (1992) Neural Networks , vol.5 , pp. 129-138
    • Gallant, A.R.1    White, H.2
  • 15
    • 10844246768 scopus 로고    scopus 로고
    • A survey on nonparametric time series analysis
    • Washington University
    • Heiler, S. (1999), A Survey on Nonparametric Time Series Analysis, Economics Working Papers at WUSTL 9904005, Washington University.
    • (1999) Economics Working Papers at WUSTL 9904005
    • Heiler, S.1
  • 16
    • 0024880831 scopus 로고
    • Multi-layer feedforward networks are universal approximators
    • Hornik, K., Stinchombe, M., and White, H. (1989), Multi-Layer Feedforward Networks Are Universal Approximators, Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchombe, M.2    White, H.3
  • 17
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multi-layer feedforward networks
    • _ (1990), Universal Approximation of an Unknown Mapping and Its Derivatives Using Multi-Layer Feedforward Networks, Neural Networks, 3, 551-560.
    • (1990) Neural Networks , vol.3 , pp. 551-560
  • 18
  • 20
    • 0346968370 scopus 로고    scopus 로고
    • Time series modeling via hierachical mixtures
    • _ (2003), Time Series Modeling via Hierachical Mixtures, Statistica Sinica, 13, 1097-1118.
    • (2003) Statistica Sinica , vol.13 , pp. 1097-1118
  • 24
    • 0000091003 scopus 로고
    • Asymptotic properties of non-linear least squares estimators
    • Jennrich, R. I. (1969), Asymptotic Properties of Non-Linear Least Squares Estimators, The Annals of Mathematical Statistics, 40, 633-643.
    • (1969) The Annals of Mathematical Statistics , vol.40 , pp. 633-643
    • Jennrich, R.I.1
  • 25
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • Jordan, M. I., and Jacobs, R. A. (1994), Hierarchical Mixtures of Experts and the EM Algorithm, Neural Computation, 6, 181-214.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 26
    • 0000720909 scopus 로고
    • Functionally equivalent feedforward neural networks
    • Kurková, V., and Kainen, P. C. (1994), Functionally Equivalent Feedforward Neural Networks, Neural Computation, 6, 543-558.
    • (1994) Neural Computation , vol.6 , pp. 543-558
    • Kurková, V.1    Kainen, P.C.2
  • 27
    • 0442327789 scopus 로고    scopus 로고
    • Stochastic neural networks with applications to nonlinear time series
    • Lai, T. L., and Wong, S. P.-S. (2001), Stochastic Neural Networks With Applications to Nonlinear Time Series, Journal of the American Statistical Association, 96, 968-981.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 968-981
    • Lai, T.L.1    Wong, S.P.-S.2
  • 29
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D. J. C. (1992a), Bayesian Interpolation, Neural Computation, 4, 415-447.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 30
    • 0002704818 scopus 로고
    • A practical bayesian framework for backpropagation networks
    • _ (1992b), A Practical Bayesian Framework for Backpropagation Networks, Neural Computation, 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
  • 32
    • 0001121243 scopus 로고    scopus 로고
    • A hybrid linear-neural model for time series forecasting
    • Medeiros, M. C., and Veiga, A. (2000a), A Hybrid Linear-Neural Model for Time Series Forecasting, IEEE Transactions on Neural Networks, 11, 1402-1412.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 1402-1412
    • Medeiros, M.C.1    Veiga, A.2
  • 33
    • 10844284999 scopus 로고    scopus 로고
    • A flexible coefficient smooth transition time series model
    • forthcoming
    • _ (2000b), A Flexible Coefficient Smooth Transition Time Series Model, IEEE Transactions on Neural Networks, forthcoming.
    • (2000) IEEE Transactions on Neural Networks
  • 34
    • 0141976692 scopus 로고    scopus 로고
    • Diagnostic checking in a flexible nonlinear time series model
    • _ (2002), Diagnostic Checking in a Flexible Nonlinear Time Series Model, Journal of Time Series Analysis, 24, 461-482.
    • (2002) Journal of Time Series Analysis , vol.24 , pp. 461-482
  • 35
    • 0000415231 scopus 로고
    • Maximum likelihood competitive learning
    • New York: Morgan Kaufmann
    • Nowlan, S. J. (1990), Maximum Likelihood Competitive Learning, in Advances in Neural Information Processing Systems, Vol. 2, New York: Morgan Kaufmann, pp. 574-582.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 574-582
    • Nowlan, S.J.1
  • 36
    • 84986759419 scopus 로고
    • The statistical analysis of perturbed limit cycle process using nonlinear time series models
    • Ozaki, T. (1982), The Statistical Analysis of Perturbed Limit Cycle Process Using Nonlinear Time Series Models, Journal of Time Series Analysis, 3, 29-41.
    • (1982) Journal of Time Series Analysis , vol.3 , pp. 29-41
    • Ozaki, T.1
  • 38
    • 38249040640 scopus 로고
    • A class of partially adaptive one-step M-estimators for the non-linear regression model with dependent observations
    • Pötscher, B. M., and Prucha, I. R. (1986), A Class of Partially Adaptive One-Step M-Estimators for the Non-Linear Regression Model With Dependent Observations, Journal of Econometrics, 32, 219-251.
    • (1986) Journal of Econometrics , vol.32 , pp. 219-251
    • Pötscher, B.M.1    Prucha, I.R.2
  • 40
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978), Estimating the Dimension of a Model, The Annals of Statistics, 6, 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 41
    • 0026897370 scopus 로고
    • Uniqueness of the weights for minimal feedforward nets with a given input-output map
    • Sussman, H. J. (1992), Uniqueness of the Weights for Minimal Feedforward Nets With a Given Input-Output Map, Neural Networks, 5, 589-593.
    • (1992) Neural Networks , vol.5 , pp. 589-593
    • Sussman, H.J.1
  • 42
    • 21844518145 scopus 로고
    • A model selection approach to assesssing the information in the term structure using linear models and artificial neural networks
    • Swanson, N. R., and White, H. (1995), A Model Selection Approach to Assesssing the Information in the Term Structure Using Linear Models and Artificial Neural Networks, Journal of Business & Economic Statistics, 13, 265-275.
    • (1995) Journal of Business & Economic Statistics , vol.13 , pp. 265-275
    • Swanson, N.R.1    White, H.2
  • 43
    • 0031521391 scopus 로고    scopus 로고
    • Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models
    • _ (1997a), Forecasting Economic Time Series Using Flexible versus Fixed Specification and Linear versus Nonlinear Econometric Models, International Journal of Forecasting, 13, 439-461.
    • (1997) International Journal of Forecasting , vol.13 , pp. 439-461
  • 44
    • 0031329532 scopus 로고    scopus 로고
    • A model selection approach to real-time macroeconomic forecasting using linear models and artificial neural networks
    • _ (1997b), A Model Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks, Review of Economic and Statistics, 79, 540-550.
    • (1997) Review of Economic and Statistics , vol.79 , pp. 540-550
  • 45
    • 0000069295 scopus 로고    scopus 로고
    • Nonparametric lag selection for time series
    • Tcherning, R., and Yang, L. (2000), Nonparametric Lag Selection for Time Series, Journal of Time Series Analysis, 21, 457-487.
    • (2000) Journal of Time Series Analysis , vol.21 , pp. 457-487
    • Tcherning, R.1    Yang, L.2
  • 46
    • 84923053681 scopus 로고
    • Specification, estimation, and evaluation of smooth transition autoregressive models
    • Teräsvirta, T. (1994), Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models, Journal of the American Statistical Association, 89, 208-218.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 208-218
    • Teräsvirta, T.1
  • 47
    • 84950945751 scopus 로고
    • Nonparametric identification of non-linear time series: Selecting significant lags
    • Tjøstheim, D., and Auestad, B. (1994), Nonparametric Identification of Non-linear Time Series: Selecting Significant Lags, Journal of the American Statistical Association, 89, 1410-1419.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1410-1419
    • Tjøstheim, D.1    Auestad, B.2
  • 49
    • 0034296647 scopus 로고    scopus 로고
    • Stationary and integrated autoregressive neural network processes
    • Trapletti, A., Leisch, F., and Hornik, K. (2000), Stationary and Integrated Autoregressive Neural Network Processes, Neural Computation, 12, 2427-2450.
    • (2000) Neural Computation , vol.12 , pp. 2427-2450
    • Trapletti, A.1    Leisch, F.2    Hornik, K.3
  • 50
    • 84950428199 scopus 로고
    • Testing and modeling threshold autoregressive processes
    • Tsay, R. (1989), Testing and Modeling Threshold Autoregressive Processes, Journal of the American Statistical Association, 84, 431-452.
    • (1989) Journal of the American Statistical Association , vol.84 , pp. 431-452
    • Tsay, R.1
  • 51
    • 85045980281 scopus 로고    scopus 로고
    • Smooth transition autoregressive models - A survey of recent developments
    • van Dijk, D., Teräsvirta, T., and Franses, P. H. (2002), Smooth Transition Autoregressive Models - A Survey of Recent Developments, Econometric Reviews, 21, 1-47.
    • (2002) Econometric Reviews , vol.21 , pp. 1-47
    • Van Dijk, D.1    Teräsvirta, T.2    Franses, P.H.3
  • 52
    • 84963436542 scopus 로고
    • Order choice in nonlinear autoregressive models
    • Vieu, P. (1995), Order Choice in Nonlinear Autoregressive Models, Statistics, 26, 307-328.
    • (1995) Statistics , vol.26 , pp. 307-328
    • Vieu, P.1
  • 53
    • 0000778985 scopus 로고
    • Predicting sunspots and exchange rates with connectionist networks
    • eds. M. Casdagli and S. Eubank, Reading, MA: Addison-Wesley
    • Weigend, A., Huberman, B., and Rumelhart, D. (1992). Predicting Sunspots and Exchange Rates With Connectionist Networks, in Nonlinear Modeling and Forecasting, eds. M. Casdagli and S. Eubank, Reading, MA: Addison-Wesley, pp. 395-432.
    • (1992) Nonlinear Modeling and Forecasting , pp. 395-432
    • Weigend, A.1    Huberman, B.2    Rumelhart, D.3
  • 54
    • 0029446195 scopus 로고
    • Nonlinear gated experts for time series: Discovering regimes and avoiding overfitting
    • Weigend, A. S., Mangeas, M., and Srivastava, A. N. (1995), Nonlinear Gated Experts for Time Series: Discovering Regimes and Avoiding Overfitting, International Journal of Neural Systems, 6, 373-399.
    • (1995) International Journal of Neural Systems , vol.6 , pp. 373-399
    • Weigend, A.S.1    Mangeas, M.2    Srivastava, A.N.3
  • 55
    • 84950860747 scopus 로고
    • Consequences and detection of misspecified nonlinear regression models
    • White, H. (1981), Consequences and Detection of Misspecified Nonlinear Regression Models, Journal of the American Statistical Association, 76, 419-433.
    • (1981) Journal of the American Statistical Association , vol.76 , pp. 419-433
    • White, H.1
  • 56
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
    • _ (1990), Connectionist Nonparametric Regression: Multilayer Feedforward Networks Can Learn Arbitrary Mappings, Neural Networks, 3, 535-550.
    • (1990) Neural Networks , vol.3 , pp. 535-550
  • 58
    • 0001013249 scopus 로고
    • Nonlinear regression with dependent observations
    • White, H., and Domowitz, I. (1984), Nonlinear Regression With Dependent Observations, Econometrica, 52, 143-162.
    • (1984) Econometrica , vol.52 , pp. 143-162
    • White, H.1    Domowitz, I.2
  • 60
    • 0442327786 scopus 로고    scopus 로고
    • On a mixture autoregressive conditional heterocedastic model
    • _ (2001), On a Mixture Autoregressive Conditional Heterocedastic Model, Journal of the American Statistical Association, 96, 982-995.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 982-995
  • 61
    • 70350103507 scopus 로고
    • Estimation and inference for dependent process
    • eds. R. F. Engle and D. L. McFadden, Amsterdam: Elsevier Science
    • Wooldridge, J. M. (1994), Estimation and Inference for Dependent Process, in Handbook of Econometrics 4, eds. R. F. Engle and D. L. McFadden, Amsterdam: Elsevier Science, pp. 2639-2738.
    • (1994) Handbook of Econometrics 4 , pp. 2639-2738
    • Wooldridge, J.M.1
  • 63
    • 0003080582 scopus 로고
    • On subset selection in non-parametric stochastic regression
    • Yao, Q., and Tong, H. (1994), On Subset Selection in Non-Parametric Stochastic Regression, Statistica Sinica, 4, 51-70.
    • (1994) Statistica Sinica , vol.4 , pp. 51-70
    • Yao, Q.1    Tong, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.