메뉴 건너뛰기




Volumn 25, Issue 1, 2006, Pages 49-75

Building neural network models for time series: A statistical approach

Author keywords

Model misspecification; Neural computing; Nonlinear forecasting; Nonlinear time series; Smooth transition autoregression

Indexed keywords

MATHEMATICAL MODELS; NONLINEAR SYSTEMS; SPECIFICATIONS; TIME SERIES ANALYSIS;

EID: 31644446914     PISSN: 02776693     EISSN: 1099131X     Source Type: Journal    
DOI: 10.1002/for.974     Document Type: Article
Times cited : (106)

References (56)
  • 2
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • Anders U, Korn O. 1999. Model selection in neural networks. Neural Networks 12: 309-323.
    • (1999) Neural Networks , vol.12 , pp. 309-323
    • Anders, U.1    Korn, O.2
  • 3
    • 0001181242 scopus 로고    scopus 로고
    • Improving the pricing of options: A neural network approach
    • Anders U, Korn O, Schmitt C. 1998. Improving the pricing of options: a neural network approach. Journal of Forecasting 17: 369-388.
    • (1998) Journal of Forecasting , vol.17 , pp. 369-388
    • Anders, U.1    Korn, O.2    Schmitt, C.3
  • 4
    • 0001627244 scopus 로고
    • Identification of nonlinear time series: First order characterization and order determination
    • Auestad B, Tjøstheim D. 1990. Identification of nonlinear time series: first order characterization and order determination. Biometrika 77: 669-687.
    • (1990) Biometrika , vol.77 , pp. 669-687
    • Auestad, B.1    Tjøstheim, D.2
  • 5
    • 0034288854 scopus 로고    scopus 로고
    • Automatic neural network modeling for univariate time series
    • Balkin SD, Ord JK. 2000. Automatic neural network modeling for univariate time series. International Journal of Forecasting 16: 509-515.
    • (2000) International Journal of Forecasting , vol.16 , pp. 509-515
    • Balkin, S.D.1    Ord, J.K.2
  • 8
    • 84981411999 scopus 로고
    • Threshold variable selection in open-loop threshold autoregressive models
    • Chen R. 1995. Threshold variable selection in open-loop threshold autoregressive models. Journal of Time Series Analysis 16: 461-481.
    • (1995) Journal of Time Series Analysis , vol.16 , pp. 461-481
    • Chen, R.1
  • 9
    • 0035392123 scopus 로고    scopus 로고
    • Semiparametric ARX neural-network models with an application to forecasting inflation
    • Chen X, Racine J, Swanson NR. 2001. Semiparametric ARX neural-network models with an application to forecasting inflation. IEEE Transactions on Neural Networks 12: 674-683.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 674-683
    • Chen, X.1    Racine, J.2    Swanson, N.R.3
  • 11
    • 0017755296 scopus 로고
    • Hypothesis testing when the nuisance parameter is present only under the alternative
    • Davies RB. 1977. Hypothesis testing when the nuisance parameter is present only under the alternative. Biometrika 64: 247-254.
    • (1977) Biometrika , vol.64 , pp. 247-254
    • Davies, R.B.1
  • 12
    • 24944532669 scopus 로고
    • Hypothesis testing when the nuisance parameter is present only under the alternative
    • Daviese RB. 1987. Hypothesis testing when the nuisance parameter is present only under the alternative. Biometrika 73: 33-44.
    • (1987) Biometrika , vol.73 , pp. 33-44
    • Daviese, R.B.1
  • 14
    • 0002158185 scopus 로고    scopus 로고
    • Testing the adequacy of smooth transition autoregressive models
    • Eitrheim Ø, Teräsvirta T. 1996. Testing the adequacy of smooth transition autoregressive models. Journal of Econometrics 74: 59-75.
    • (1996) Journal of Econometrics , vol.74 , pp. 59-75
    • Eitrheim, Ø.1    Teräsvirta, E.2
  • 15
    • 0346207692 scopus 로고    scopus 로고
    • Market efficiency, long-term returns, and behavioral finance
    • Fama EF. 1998. Market efficiency, long-term returns, and behavioral finance. Journal of Financial Economics 49: 283-306.
    • (1998) Journal of Financial Economics , vol.49 , pp. 283-306
    • Fama, E.F.1
  • 17
    • 0000703669 scopus 로고
    • Data transformations and self-exciting threshold autoregression
    • Ghaddar DK, Tong H. 1981. Data transformations and self-exciting threshold autoregression. Journal of the Royal Statistical Society C30: 238-248.
    • (1981) Journal of the Royal Statistical Society , vol.C30 , pp. 238-248
    • Ghaddar, D.K.1    Tong, H.2
  • 18
    • 0004165605 scopus 로고
    • Econometric Society Monographs, 2nd edn. Cambridge University Press: New York
    • Godfrey LG. 1988. Misspecification Tests in Econometrics. Econometric Society Monographs, Vol. 16, 2nd edn. Cambridge University Press: New York.
    • (1988) Misspecification Tests in Econometrics , vol.16
    • Godfrey, L.G.1
  • 19
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • Golub G, Heath M, Wahba G. 1979. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21: 215-223.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.1    Heath, M.2    Wahba, G.3
  • 20
    • 0030373966 scopus 로고    scopus 로고
    • Inference when a nuisance parameter is not identified under the null hypothesis
    • Hansen BE. 1996. Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica 64: 413-430.
    • (1996) Econometrica , vol.64 , pp. 413-430
    • Hansen, B.E.1
  • 23
    • 0000497341 scopus 로고    scopus 로고
    • Computer automation of general-to-specific model selection procedures
    • Krolzig H-M, Hendry DF. 2001. Computer automation of general-to-specific model selection procedures. Journal of Economic Dynamics Control 25: 831-866.
    • (2001) Journal of Economic Dynamics Control , vol.25 , pp. 831-866
    • Krolzig, H.-M.1    Hendry, D.F.2
  • 24
    • 84948516717 scopus 로고
    • Artificial neural networks: An econometric perspective
    • Kuan CM, White H. 1994. Artificial neural networks: an econometric perspective. Econometric Reviews 13: 1-91.
    • (1994) Econometric Reviews , vol.13 , pp. 1-91
    • Kuan, C.M.1    White, H.2
  • 25
    • 43949168783 scopus 로고
    • Testing for negleted nonlinearity in time series models. A comparison of neural network methods alternative tests
    • Lee T-H, White H, Granger CWJ. 1993. Testing for negleted nonlinearity in time series models. A comparison of neural network methods alternative tests. Journal of Econometrics 56: 269-290.
    • (1993) Journal of Econometrics , vol.56 , pp. 269-290
    • Lee, T.-H.1    White, H.2    Cwj, G.3
  • 28
    • 0347354955 scopus 로고    scopus 로고
    • Entropy and predictability of stock market returns
    • Maasoumi E, Racine J. 2001. Entropy and predictability of stock market returns. Journal of Econometrics 107: 291-312.
    • (2001) Journal of Econometrics , vol.107 , pp. 291-312
    • Maasoumi, E.1    Racine, J.2
  • 29
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay DJC. 1992a. Bayesian interpolation. Neural Computation 4: 415-447.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 30
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay DJC. 1992b. A practical Bayesian framework for backpropagation networks. Neural Computation 4: 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 31
    • 0028544395 scopus 로고
    • Network information criterion - Determining the number of hidden units for an artificial neural network model
    • Murata N, Yoshizawa S, Amari S-I. 1994. Network information criterion - determining the number of hidden units for an artificial neural network model. IEEE Transactions on Neural Networks 5: 865-872.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.-I.3
  • 32
    • 84993877356 scopus 로고
    • Predictability of stock returns: Robustness and economic significance
    • Pesaran MH, Timmermann A. 1995. Predictability of stock returns: robustness and economic significance. Journal of Finance 50: 1201-1228.
    • (1995) Journal of Finance , vol.50 , pp. 1201-1228
    • Pesaran, M.H.1    Timmermann, A.2
  • 33
    • 0033435319 scopus 로고    scopus 로고
    • Nonlinear predictability of stock returns using financial and economic variables
    • Qi M. 1999. Nonlinear predictability of stock returns using financial and economic variables. Journal of Business and Economic and Statistics 17: 419-429.
    • (1999) Journal of Business and Economic and Statistics , vol.17 , pp. 419-429
    • Qi, M.1
  • 34
    • 0035638655 scopus 로고    scopus 로고
    • On the nonlinear predictability of stock returns using financial and economic variables
    • Racine J. 2001. On the nonlinear predictability of stock returns using financial and economic variables. Journal of Business and Economic Statistics 19: 380-382.
    • (2001) Journal of Business and Economic Statistics , vol.19 , pp. 380-382
    • Racine, J.1
  • 35
    • 1642389139 scopus 로고    scopus 로고
    • Forecasting with artificial neural network models
    • Stockholm School of Economics
    • Rech G. 2002. Forecasting with artificial neural network models. Working Paper Series in Economics and Finance 491, Stockholm School of Economics.
    • (2002) Working Paper Series in Economics and Finance , vol.491
    • Rech, G.1
  • 37
    • 0033365782 scopus 로고    scopus 로고
    • Neural model identification, variable selection, and model adequacy
    • Refenes APN, Zapranis AD. 1999. Neural model identification, variable selection, and model adequacy. Journal of Forecasting 18: 299-332.
    • (1999) Journal of Forecasting , vol.18 , pp. 299-332
    • Refenes, A.P.N.1    Zapranis, A.D.2
  • 38
    • 21844518145 scopus 로고
    • A model selection approach to assessing the information in the term structure using linear models and artificial neural networks
    • Swanson NR, White H. 1995. A model selection approach to assessing the information in the term structure using linear models and artificial neural networks. Journal of Business and Economic Statistics 13: 265-275.
    • (1995) Journal of Business and Economic Statistics , vol.13 , pp. 265-275
    • Swanson, N.R.1    White, H.2
  • 39
    • 0031521391 scopus 로고    scopus 로고
    • Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models
    • Swanson NR, White H. 1997a. Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models. International Journal of Forecasting 13: 439-461.
    • (1997) International Journal of Forecasting , vol.13 , pp. 439-461
    • Swanson, N.R.1    White, H.2
  • 40
    • 0031329532 scopus 로고    scopus 로고
    • A model selection approach to real-time macroeconomic forecasting using linear models and artificial neural networks
    • Swanson NR, White H. 1997b. A model selection approach to real-time macroeconomic forecasting using linear models and artificial neural networks. Review of Economic and Statistics 79: 540-550.
    • (1997) Review of Economic and Statistics , vol.79 , pp. 540-550
    • Swanson, N.R.1    White, H.2
  • 41
    • 84923053681 scopus 로고
    • Specification, estimation, and evaluation of smooth transition autoregressive models
    • Teräsvirta T. 1994. Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association 89: 208-218.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 208-218
    • Teräsvirta, T.1
  • 42
    • 84858533180 scopus 로고
    • Determining the number of hidden units in a single hidden-layer neural network model
    • Bank of Norway
    • Teräsvirta T, Lin, C-FJ. 1993. Determining the number of hidden units in a single hidden-layer neural network model. Research Report 1993/7, Bank of Norway.
    • (1993) Research Report , vol.1993 , Issue.7
    • Teräsvirta, T.1    Lin, C.-F.J.2
  • 43
    • 0001281382 scopus 로고
    • Model selection criteria and model selection tests in regression models
    • Teräsvirta T, Meilin I. 1986. Model selection criteria and model selection tests in regression models. Scandinavian Journal of Statistics 13: 159-171.
    • (1986) Scandinavian Journal of Statistics , vol.13 , pp. 159-171
    • Teräsvirta, T.1    Meilin, I.2
  • 45
    • 26944442012 scopus 로고    scopus 로고
    • Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination
    • forthcoming
    • Teräsvirta T, van Dijk D, Medeiros M. 2005. Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: a re-examination. International Journal of Forecasting, forthcoming.
    • (2005) International Journal of Forecasting
    • Teräsvirta, T.1    Van Dijk, D.2    Medeiros, M.3
  • 46
    • 84950945751 scopus 로고
    • Nonparametric identification of nonlinear time series-selecting significant lags
    • Tjøstheim D, Auestad B. 1994. Nonparametric identification of nonlinear time series-selecting significant lags. Journal of the American Statistical Association 89: 1410-1419.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1410-1419
    • Tjøstheim, D.1    Auestad, B.2
  • 48
    • 0034296647 scopus 로고    scopus 로고
    • Stationary and integrated autoregressive neural network processes
    • Trapletti A, Leisch F, Hornik K. 2000. Stationary and integrated autoregressive neural network processes. Neural Computation 12: 2427-2450.
    • (2000) Neural Computation , vol.12 , pp. 2427-2450
    • Trapletti, A.1    Leisch, F.2    Hornik, K.3
  • 50
    • 84963436542 scopus 로고
    • Order choice in nonlinear autoregressive models
    • Vieu P. 1995. Order choice in nonlinear autoregressive models. Statistics 26: 307-328.
    • (1995) Statistics , vol.26 , pp. 307-328
    • Vieu, P.1
  • 51
    • 0000778985 scopus 로고
    • Predicting sunspots and exchange rates with connectionist networks
    • Casdagli M, Eubank S (eds). Addison-Wesley: Reading, MA
    • Weigend A, Huberman B, Rumelhart D. 1992. Predicting sunspots and exchange rates with connectionist networks. In Nonlinear Modeling and Forecasting, Casdagli M, Eubank S (eds). Addison-Wesley: Reading, MA.
    • (1992) Nonlinear Modeling and Forecasting
    • Weigend, A.1    Huberman, B.2    Rumelhart, D.3
  • 52
    • 0000095552 scopus 로고
    • A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity
    • White H. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48: 817-838.
    • (1980) Econometrica , vol.48 , pp. 817-838
    • White, H.1
  • 53
    • 0024944645 scopus 로고
    • An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks
    • IEEE Press: New York
    • White H. 1989. An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks. In Proceedings of the International Joint Conference on Neural Networks. IEEE Press: New York; 451-455.
    • (1989) Proceedings of the International Joint Conference on Neural Networks , pp. 451-455
    • White, H.1
  • 54
    • 84972113785 scopus 로고
    • A unified approach to robust, regression-based specification tests
    • Wooldridge JM. 1990. A unified approach to robust, regression-based specification tests. Econometric Theory 6: 17-43.
    • (1990) Econometric Theory , vol.6 , pp. 17-43
    • Wooldridge, J.M.1
  • 55
    • 0003080582 scopus 로고
    • On subset selection in non-parametric stochastic regression
    • Yao Q, Tong H. 1994. On subset selection in non-parametric stochastic regression. Statistica Sinica 4: 51-70.
    • (1994) Statistica Sinica , vol.4 , pp. 51-70
    • Yao, Q.1    Tong, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.