메뉴 건너뛰기




Volumn 96, Issue 455, 2001, Pages 968-981

Stochastic neural networks with applications to nonlinear time series

Author keywords

Expectation maximization algorithm; Hidden markov models; Model selection; Neural networks; Nonlinear stochastic systems

Indexed keywords


EID: 0442327789     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1198/016214501753208636     Document Type: Article
Times cited : (34)

References (49)
  • 2
    • 84888726083 scopus 로고    scopus 로고
    • Boltzmann Machines: Statistical Associations and Algorithms for Training
    • Implementation Techniques, ed. C. T. Leondes, New York: Academic Press
    • Anderson, N. H., and Titterington, D. M. (1999), “Boltzmann Machines: Statistical Associations and Algorithms for Training,” in Neural Network Systems: Techniques and Applications (Vol. 3, Implementation Techniques), ed. C. T. Leondes, New York: Academic Press, pp. 51–89.
    • (1999) Neural Network Systems: Techniques and Applications , vol.3 , pp. 51-89
    • Anderson, N.H.1    Titterington, D.M.2
  • 3
    • 0027599793 scopus 로고
    • Universal Approximation Bounds for Superpositions of a Sigmoid Function
    • Barron, A. R. (1993), “Universal Approximation Bounds for Superpositions of a Sigmoid Function,” IEEE Transactions on Information Theory, 39, 930–945.
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 8
    • 0000888765 scopus 로고
    • A General Definition of Residuals
    • (with discussion), Ser. B
    • Cox, D. R., and Snell, E. J. (1968), “A General Definition of Residuals” (with discussion), Journal of the Royal Statistical Society, Ser. B, 30, 248–275.
    • (1968) Journal of the Royal Statistical Society , vol.30 , pp. 248-275
    • Cox, D.R.1    Snell, E.J.2
  • 9
    • 0000979403 scopus 로고    scopus 로고
    • Sequential Monte Carlo Methods to Train Neural Network Models
    • de Freitas, J. F. G., Niranjan, M., Gee, A. H., and Doucet, A. (2000), “Sequential Monte Carlo Methods to Train Neural Network Models,” Neural Computation, 12, 955–993.
    • (2000) Neural Computation , vol.12 , pp. 955-993
    • De Freitas, J.F.G.1    Niranjan, M.2    Gee, A.H.3    Doucet, A.4
  • 12
    • 0002432565 scopus 로고    scopus 로고
    • H. (1991), “Multivariate Adaptive Regression Splines” (with discussion)
    • Friedman, J. H. (1991), “Multivariate Adaptive Regression Splines” (with discussion), Annals of Statistics, 19, 1–141.
    • Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.1
  • 15
    • 0000414660 scopus 로고
    • Large Sample Properties of Generalized Method of Moments Estimators
    • Hansen, L. P. (1982), “Large Sample Properties of Generalized Method of Moments Estimators,” Econometrica, 50, 1029–1054.
    • (1982) Econometrica , vol.50 , pp. 1029-1054
    • Hansen, L.P.1
  • 19
    • 84993911657 scopus 로고
    • A Nonparametric Approach to the Pricing and Hedging of Derivatives via Learning Networks
    • Hutchison, J., Lo, A., and Poggio, T. (1994), “A Nonparametric Approach to the Pricing and Hedging of Derivatives via Learning Networks,” Journal of Finance, 49, 851–889.
    • (1994) Journal of Finance , vol.49 , pp. 851-889
    • Hutchison, J.1    Lo, A.2    Poggio, T.3
  • 21
    • 0000262562 scopus 로고
    • Hierachical Mixtures of Experts and the EM Algorithm
    • Jordan, M., and Jacobs, R. (1994), “Hierachical Mixtures of Experts and the EM Algorithm,” Neural Computation, 6, 181–214.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.1    Jacobs, R.2
  • 24
    • 78649633935 scopus 로고
    • Nonlinear Modeling of Time Series Using Multivariate Adaptive Regression Splines (MARS)
    • Lewis, P. A. W., and Stevens, J. G. (1991), “Nonlinear Modeling of Time Series Using Multivariate Adaptive Regression Splines (MARS),” Journal of the American Statistical Association, 86, 864–877.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 864-877
    • Lewis, P.A.W.1    Stevens, J.G.2
  • 27
    • 51249194645 scopus 로고
    • A Logical Calculus of Ideas Imminent in Neural Activity
    • McCulloch, W. S., and Pitts, W. (1943), “A Logical Calculus of Ideas Imminent in Neural Activity,” Bulletin of Mathematical Biophysics, 5, 115–133.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 28
    • 44049116681 scopus 로고
    • Connectionist Learning of Belief Networks
    • Neal, R. (1992), “Connectionist Learning of Belief Networks,” Artificial Intelligence, 56, 71–113.
    • (1992) Artificial Intelligence , vol.56 , pp. 71-113
    • Neal, R.1
  • 30
    • 0021325618 scopus 로고
    • Collective Properties of Neural Networks: A Statistical Physics Approach
    • Peretto, P. (1984), “Collective Properties of Neural Networks: A Statistical Physics Approach,” Biological Cybernetics, 50, 51–62.
    • (1984) Biological Cybernetics , vol.50 , pp. 51-62
    • Peretto, P.1
  • 31
    • 0030107810 scopus 로고    scopus 로고
    • Stable Adaptive Neural Control Scheme for Nonlinear Systems
    • Polycarpou, M. M. (1996), “Stable Adaptive Neural Control Scheme for Nonlinear Systems,” IEEE Transactions on Automatic Control, 41, 447–451.
    • (1996) IEEE Transactions on Automatic Control , vol.41 , pp. 447-451
    • Polycarpou, M.M.1
  • 32
    • 0021404166 scopus 로고
    • Mixture Densities, Maximum Likelihood and the EM Algorithm
    • Redner, R. A., and Walker, H. F. (1984), “Mixture Densities, Maximum Likelihood and the EM Algorithm,” SIAM Review, 26, 195–239.
    • (1984) SIAM Review , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 33
    • 0022471098 scopus 로고
    • Learning Representations by Backpropagation Errors
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986), “Learning Representations by Backpropagation Errors,” Nature, 323, 533–536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 34
  • 38
    • 0000003175 scopus 로고
    • Threshold Autoregression, Limit Cycles and Cyclical Data
    • (with discussion), Ser. B
    • Tong, H., and Lim, K. S. (1980), “Threshold Autoregression, Limit Cycles and Cyclical Data” (with discussion), Journal of the Royal Statistical Society, Ser. B, 42, 245–292.
    • (1980) Journal of the Royal Statistical Society , vol.42 , pp. 245-292
    • Tong, H.1    Lim, K.S.2
  • 40
    • 0347600770 scopus 로고    scopus 로고
    • Nonlinear Time-Series Prediction with Missing and Noisy Data
    • Tresp, V., and Hofmann, R. (1998), “Nonlinear Time-Series Prediction with Missing and Noisy Data,” Neural Computation, 10, 731–747.
    • (1998) Neural Computation , vol.10 , pp. 731-747
    • Tresp, V.1    Hofmann, R.2
  • 43
    • 0000778985 scopus 로고
    • Predicting Sunspots and Exchange Rates with Connectionist Networks
    • M. Casdagli and S. Eubank,), Redwood City, CA: Addison Wesley
    • Weigend, A., Rumelhart, D., and Huberman, B. (1991), “Predicting Sunspots and Exchange Rates with Connectionist Networks,” in Nonlinear Modeling and Forecasting, (eds. M. Casdagli and S. Eubank,), Redwood City, CA: Addison Wesley, pp. 395–432.
    • (1991) Nonlinear Modeling and Forecasting , pp. 395-432
    • Weigend, A.1    Rumelhart, D.2    Huberman, B.3
  • 44
    • 84950860747 scopus 로고
    • Consequences and Detection of Misspecified Nonlinear Regression Models
    • White, H. (1981), “Consequences and Detection of Misspecified Nonlinear Regression Models,” Journal of the American Statistical Association, 76, 419–433.
    • (1981) Journal of the American Statistical Association , vol.76 , pp. 419-433
    • White, H.1
  • 45
    • 0012195187 scopus 로고
    • Some Asymptotic Results for Learning in Single Hidden-Layer Feedforward Network Models
    • White, H. (1989), “Some Asymptotic Results for Learning in Single Hidden-Layer Feedforward Network Models,” Journal of the American Statistical Association, 84, 1003–1013.
    • (1989) Journal of the American Statistical Association , vol.84 , pp. 1003-1013
    • White, H.1
  • 48
    • 0002210265 scopus 로고
    • On the Convergence Properties of the EM Algorithm
    • Wu, C. F. J. (1983), “On the Convergence Properties of the EM Algorithm,” Annals of Statistics, 11, 95–103.
    • (1983) Annals of Statistics , vol.11 , pp. 95-103
    • Wu, C.F.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.