메뉴 건너뛰기




Volumn 5, Issue SPECIALISSUE.2, 2013, Pages

Beneficial bioelectrochemical systems for energy, water, and biomass production

Author keywords

Algae; Desalination; Microbial desalination cells; Microbial fuel cells; Microbial solar cells; Sustainable energy

Indexed keywords


EID: 84905484052     PISSN: None     EISSN: 19485948     Source Type: Journal    
DOI: 10.4172/1948-5948.S6-005     Document Type: Article
Times cited : (79)

References (135)
  • 1
    • 79955008125 scopus 로고    scopus 로고
    • Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste
    • Lee Y, Nirmalakhandan N (2011) Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste. Bioresour Technol 102: 5831-5835.
    • (2011) Bioresour Technol , vol.102 , pp. 5831-5835
    • Lee, Y.1    Nirmalakhandan, N.2
  • 2
    • 41049085567 scopus 로고    scopus 로고
    • Brewery wastewater treatment using air-cathode microbial fuel cells
    • Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78: 873-880.
    • (2008) Appl Microbiol Biotechnol , vol.78 , pp. 873-880
    • Feng, Y.1    Wang, X.2    Logan, B.E.3    Lee, H.4
  • 3
    • 57549116509 scopus 로고    scopus 로고
    • Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter
    • Greenman J, Gálvez A, Giusti L, Ieropoulos I (2009). Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter. Enzyme and Microbial Technology 44: 112-119.
    • (2009) Enzyme and Microbial Technology , vol.44 , pp. 112-119
    • Greenman, J.1    Gálvez, A.2    Giusti, L.3    Ieropoulos, I.4
  • 4
    • 67650269404 scopus 로고    scopus 로고
    • Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber
    • Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, et al. (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour Technol 100: 5132-5139.
    • (2009) Bioresour Technol , vol.100 , pp. 5132-5139
    • Patil, S.A.1    Surakasi, V.P.2    Koul, S.3    Ijmulwar, S.4    Vivek, A.5
  • 5
    • 27744556556 scopus 로고    scopus 로고
    • Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies
    • Oh SE, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39: 4673-4682.
    • (2005) Water Res , vol.39 , pp. 4673-4682
    • Oh, S.E.1    Logan, B.E.2
  • 6
    • 78751626365 scopus 로고    scopus 로고
    • Energy production from food industry wastewaters using bioelectrochemical cells
    • Emerging Environmental Technologies. Springer Publications.
    • Borole AP, Hamilton CY (2009). Energy production from food industry wastewaters using bioelectrochemical cells. In: Emerging Environmental Technologies. Springer Publications.
    • (2009)
    • Borole, A.P.1    Hamilton, C.Y.2
  • 7
    • 33750443594 scopus 로고    scopus 로고
    • Application of bacterial biocathodes in microbial fuel cells
    • He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18: 2009-2015.
    • (2006) Electroanalysis , vol.18 , pp. 2009-2015
    • He, Z.1    Angenent, L.T.2
  • 9
    • 27744521813 scopus 로고    scopus 로고
    • Remediation and recovery of uranium from contaminated subsurface environments with electrodes
    • Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39: 8943-8947.
    • (2005) Environ Sci Technol , vol.39 , pp. 8943-8947
    • Gregory, K.B.1    Lovley, D.R.2
  • 10
    • 77958560632 scopus 로고    scopus 로고
    • Complete anaerobic mineralization of pentachlorophenol (PCP) under continuous flow conditions by sequential combination of PCP-dechlorinating and phenol-degrading consortia
    • Li Z, Yang S, Inoue Y, Yoshida N, Katayama A (2010) Complete anaerobic mineralization of pentachlorophenol (PCP) under continuous flow conditions by sequential combination of PCP-dechlorinating and phenol-degrading consortia. Biotechnol Bioeng 107: 775-785.
    • (2010) Biotechnol Bioeng , vol.107 , pp. 775-785
    • Li, Z.1    Yang, S.2    Inoue, Y.3    Yoshida, N.4    Katayama, A.5
  • 11
    • 77957348875 scopus 로고    scopus 로고
    • Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells
    • Huang L, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102: 316-323.
    • (2011) Bioresour Technol , vol.102 , pp. 316-323
    • Huang, L.1    Regan, J.M.2    Quan, X.3
  • 12
    • 84870746015 scopus 로고    scopus 로고
    • Microbial desalination cells for energy production and desalination
    • Kim Y, Logan BE (2013) Microbial desalination cells for energy production and desalination. Desalination 308: 122-130.
    • (2013) Desalination , vol.308 , pp. 122-130
    • Kim, Y.1    Logan, B.E.2
  • 13
    • 84862777512 scopus 로고    scopus 로고
    • Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells
    • Cusick RD, Kim Y, Logan BE (2012) Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells. Science 335: (6075) 1474-1477.
    • (2012) Science , vol.335 , Issue.6075 , pp. 1474-1477
    • Cusick, R.D.1    Kim, Y.2    Logan, B.E.3
  • 14
    • 78650969391 scopus 로고    scopus 로고
    • Methanogenic communities on the electrodes of bioelectrochemical reactors without membranes
    • Sasaki K, Morita M, Sasaki D, Hirano S, Matsumoto N et al. (2011). Methanogenic communities on the electrodes of bioelectrochemical reactors without membranes. J Biosci Bioeng 111: 47-49.
    • (2011) J Biosci Bioeng , vol.111 , pp. 47-49
    • Sasaki, K.1    Morita, M.2    Sasaki, D.3    Hirano, S.4    Matsumoto, N.5
  • 16
    • 77956271750 scopus 로고    scopus 로고
    • Light-Dependent Electrogenic Activity of Cyanobacteria
    • doi:10.1371/journal.pone.0010821.
    • Pisciotta JM, Zou Y, Baskakov IV (2010) Light-Dependent Electrogenic Activity of Cyanobacteria. PLoS ONE 5(5): e10821. doi:10.1371/journal.pone.0010821.
    • (2010) PLoS ONE , vol.5 , Issue.5
    • Pisciotta, J.M.1    Zou, Y.2    Baskakov, I.V.3
  • 18
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85: 1665-1671.
    • (2010) Appl Microbiol Biotechnol , vol.85 , pp. 1665-1671
    • Logan, B.E.1
  • 20
    • 67349120260 scopus 로고    scopus 로고
    • Non-catalyzed microbial fuel cell (MFC) with open air cathode for bioelectricity generation during acidogenic wastewater treatment
    • Mohan SV, Srikanth S, Sarma PN (2009) Non-catalyzed microbial fuel cell (MFC) with open air cathode for bioelectricity generation during acidogenic wastewater treatment. Bioelectrochemistry 75: 130-135.
    • (2009) Bioelectrochemistry , vol.75 , pp. 130-135
    • Mohan, S.V.1    Srikanth, S.2    Sarma, P.N.3
  • 21
    • 19444367096 scopus 로고    scopus 로고
    • Microbial fuel cells: novel biotechnology for energy generation
    • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23: 291-298.
    • (2005) Trends Biotechnol , vol.23 , pp. 291-298
    • Rabaey, K.1    Verstraete, W.2
  • 22
    • 34447285505 scopus 로고    scopus 로고
    • A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy
    • Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25: 464-482.
    • (2007) Biotechnol Adv , vol.25 , pp. 464-482
    • Du, Z.1    Li, H.2    Gu, T.3
  • 25
    • 34447523820 scopus 로고    scopus 로고
    • Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
    • Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9: 2619-2629.
    • (2007) Phys Chem Chem Phys , vol.9 , pp. 2619-2629
    • Schröder, U.1
  • 27
    • 0032527229 scopus 로고    scopus 로고
    • Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani
    • Piccolino M (1998) Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain Res Bull 46: 381-407.
    • (1998) Brain Res Bull , vol.46 , pp. 381-407
    • Piccolino, M.1
  • 28
    • 0003932256 scopus 로고
    • Electrical Effects Accompanying the Decomposition of Organic Compounds
    • Potter MC (1911) Electrical Effects Accompanying the Decomposition of Organic Compounds. R Soc Lond 84: 260-276.
    • (1911) R Soc Lond , vol.84 , pp. 260-276
    • Potter, M.C.1
  • 29
    • 0002906445 scopus 로고
    • The Bacterial Culture as an Electrical Half-Cell
    • Cohen B (1931) The Bacterial Culture as an Electrical Half-Cell. Journal of Bacteriology 21: 18-19.
    • (1931) Journal of Bacteriology , vol.21 , pp. 18-19
    • Cohen, B.1
  • 30
    • 84905468938 scopus 로고
    • NASA Technical report, Magna Corporation, Anaheim, CA.
    • Canfield JH, Goldner BH, Lutwack R (1963) NASA Technical report, Magna Corporation, Anaheim, CA.
    • (1963)
    • Canfield, J.H.1    Goldner, B.H.2    Lutwack, R.3
  • 31
    • 0000385220 scopus 로고
    • Biofuel Cells containing algae: In charge and field effects in biosystems
    • Bennetto HP, Tanaka K, Matsuda K (1984) Biofuel Cells containing algae: In charge and field effects in biosystems. Life Chem Rep 2: 363.
    • (1984) Life Chem Rep , vol.2 , pp. 363
    • Bennetto, H.P.1    Tanaka, K.2    Matsuda, K.3
  • 35
    • 70350550167 scopus 로고    scopus 로고
    • Impedance spectroscopy as a Tool for Non-Intrusive Detection of Extracellular mediators in microbial fuel cells
    • Ramaraja PR, Gadhamshetty V, Nadeau LJ, Johnson G (2009) Impedance spectroscopy as a Tool for Non-Intrusive Detection of Extracellular mediators in microbial fuel cells. Biotechnology & Bioengineering. 104(5) 882-891
    • (2009) Biotechnology & Bioengineering , vol.104 , Issue.5 , pp. 882-891
    • Ramaraja, P.R.1    Gadhamshetty, V.2    Nadeau, L.J.3    Johnson, G.4
  • 37
    • 79953848195 scopus 로고    scopus 로고
    • Stacked microbial desalination cells to enhance water desalination efficiency
    • Chen X, Xia X, Liang P, Cao X, Sun H, et al. (2011) Stacked microbial desalination cells to enhance water desalination efficiency. Environ Sci Technol 45: 2465-2470.
    • (2011) Environ Sci Technol , vol.45 , pp. 2465-2470
    • Chen, X.1    Xia, X.2    Liang, P.3    Cao, X.4    Sun, H.5
  • 38
    • 78650700266 scopus 로고    scopus 로고
    • Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells
    • Luo H, Jenkins PE, Ren Z (2011) Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ Sci Technol 45: 340-344.
    • (2011) Environ Sci Technol , vol.45 , pp. 340-344
    • Luo, H.1    Jenkins, P.E.2    Ren, Z.3
  • 39
    • 78650259349 scopus 로고    scopus 로고
    • Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production
    • Mehanna M, Kiely PD, Call DF, Logan BE (2010) Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environ Sci Technol 44: 9578-9583.
    • (2010) Environ Sci Technol , vol.44 , pp. 9578-9583
    • Mehanna, M.1    Kiely, P.D.2    Call, D.F.3    Logan, B.E.4
  • 40
    • 77957068564 scopus 로고    scopus 로고
    • Using microbial desalination cells to reduce water salinity prior to reverse osmosis
    • Mehanna M, Saito T, Yan J, Hickner M, Cao X et al. (2011) Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ Sci 3: 1114-1120.
    • (2011) Energy Environ Sci , vol.3 , pp. 1114-1120
    • Mehanna, M.1    Saito, T.2    Yan, J.3    Hickner, M.4    Cao, X.5
  • 41
    • 84855345089 scopus 로고    scopus 로고
    • Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control
    • Qu Y, Feng Y, Wang X, Liu J, Lv J, et al. (2012) Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour Technol 106: 89-94.
    • (2012) Bioresour Technol , vol.106 , pp. 89-94
    • Qu, Y.1    Feng, Y.2    Wang, X.3    Liu, J.4    Lv, J.5
  • 42
    • 84855248755 scopus 로고    scopus 로고
    • Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination
    • Luo H, Xu P, Roane TM, Jenkins PE, Ren Z (2012) Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour. Technol. 105: 60-66.
    • (2012) Bioresour. Technol. , vol.105 , pp. 60-66
    • Luo, H.1    Xu, P.2    Roane, T.M.3    Jenkins, P.E.4    Ren, Z.5
  • 43
    • 79959903351 scopus 로고    scopus 로고
    • Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination
    • Kim Y, Logan BE (2011) Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environ. Sci. Technol. 45: 5840-5845.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 5840-5845
    • Kim, Y.1    Logan, B.E.2
  • 44
    • 84859352600 scopus 로고    scopus 로고
    • Integrated salinity reduction and water recovery in an osmotic microbial desalination cell
    • Zhang B, He Z (2012) Integrated salinity reduction and water recovery in an osmotic microbial desalination cell. RSC Adv 2: 3265-3269.
    • (2012) RSC Adv , vol.2 , pp. 3265-3269
    • Zhang, B.1    He, Z.2
  • 45
    • 79956041957 scopus 로고    scopus 로고
    • Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater
    • Jacobson KS, Drew DM, He Z (2011) Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ. Sci. Technol. 45: 4652-4657.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 4652-4657
    • Jacobson, K.S.1    Drew, D.M.2    He, Z.3
  • 46
    • 77957361587 scopus 로고    scopus 로고
    • Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode
    • Jacobson KS, Drew DM, He Z (2011) Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresour. Technol. 102: 376-380.
    • (2011) Bioresour. Technol. , vol.102 , pp. 376-380
    • Jacobson, K.S.1    Drew, D.M.2    He, Z.3
  • 47
    • 77958034514 scopus 로고    scopus 로고
    • From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems
    • Schroder, Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem. Soc. Rev 39: 4433-4448.
    • (2010) Chem. Soc. Rev , vol.39 , pp. 4433-4448
    • Schroder1    Harnisch, F.2    Schröder, U.3
  • 48
    • 40749115223 scopus 로고    scopus 로고
    • Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates
    • Lee HS, Parameswaran P, Kato-Marcus A, Torres CI, Rittmann BE (2008) Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42: 1501- 1510.
    • (2008) Water Res , vol.42
    • Lee, H.S.1    Parameswaran, P.2    Kato-Marcus, A.3    Torres, C.I.4    Rittmann, B.E.5
  • 49
    • 33846631531 scopus 로고    scopus 로고
    • A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes
    • Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR (2007) A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron 22: 1672-1679.
    • (2007) Biosens Bioelectron , vol.22 , pp. 1672-1679
    • Biffinger, J.C.1    Pietron, J.2    Ray, R.3    Little, B.4    Ringeisen, B.R.5
  • 50
    • 40749123642 scopus 로고    scopus 로고
    • Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells
    • Freguia S, Rabaey K, Yuan Z, Keller J (2008) Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Research 42:1387-1396
    • (2008) Water Research , vol.42 , pp. 1387-1396
    • Freguia, S.1    Rabaey, K.2    Yuan, Z.3    Keller, J.4
  • 51
    • 84863941940 scopus 로고    scopus 로고
    • Microbial community analysis in biocathode microbial fuel cells packed with different materials
    • Sun Y, Wei J, Liang P, Huang X (2012) Microbial community analysis in biocathode microbial fuel cells packed with different materials. AMB Express 2: 21.
    • (2012) AMB Express , vol.2 , pp. 21
    • Sun, Y.1    Wei, J.2    Liang, P.3    Huang, X.4
  • 52
    • 35948991776 scopus 로고    scopus 로고
    • Open air biocathode enables effective electricity generation with microbial fuel cells
    • Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, et al. (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41: 7564-7569.
    • (2007) Environ Sci Technol , vol.41 , pp. 7564-7569
    • Clauwaert, P.1    Van der Ha, D.2    Boon, N.3    Verbeken, K.4    Verhaege, M.5
  • 55
    • 84455205481 scopus 로고    scopus 로고
    • Biocathode microbial fuel cell for efficient electricity recovery from dairy manure
    • Zhang G, Zhao Q, Jiao Y, Wang K, Lee DJ, et al. (2012) Biocathode microbial fuel cell for efficient electricity recovery from dairy manure. Biosens Bioelectron 31: 537-543.
    • (2012) Biosens Bioelectron , vol.31 , pp. 537-543
    • Zhang, G.1    Zhao, Q.2    Jiao, Y.3    Wang, K.4    Lee, D.J.5
  • 57
    • 84866148210 scopus 로고    scopus 로고
    • Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes
    • Pisciotta JM, Zaybak Z, Call DF, Nam JY, Logan BE (2012) Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes. Appl Environ Microbiol. 78: 5212-5219.
    • (2012) Appl Environ Microbiol. , vol.78 , pp. 5212-5219
    • Pisciotta, J.M.1    Zaybak, Z.2    Call, D.F.3    Nam, J.Y.4    Logan, B.E.5
  • 58
    • 78651395312 scopus 로고    scopus 로고
    • Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion
    • Cheng KY, Ho G, Cord-Ruwisch R (2011) Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion. Environ Sci Technol 45: 796-802.
    • (2011) Environ Sci Technol , vol.45 , pp. 796-802
    • Cheng, K.Y.1    Ho, G.2    Cord-Ruwisch, R.3
  • 59
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43: 3953-3958.
    • (2009) Environ Sci Technol , vol.43 , pp. 3953-3958
    • Cheng, S.1    Xing, D.2    Call, D.F.3    Logan, B.E.4
  • 60
    • 77954841243 scopus 로고    scopus 로고
    • Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor
    • Strycharz SM, Gannon SM, Boles AR, Franks AE, Nevin KP, et al. (2010) Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ Microbiol Rep 2: 289-294.
    • (2010) Environ Microbiol Rep , vol.2 , pp. 289-294
    • Strycharz, S.M.1    Gannon, S.M.2    Boles, A.R.3    Franks, A.E.4    Nevin, K.P.5
  • 61
    • 84856877318 scopus 로고    scopus 로고
    • Nano-Engineered Biocatalyst-Electrode Structures for Next Generation Microbial Fuel Cells
    • Gadhamshetty V, Koratkar N (2012) Nano-Engineered Biocatalyst-Electrode Structures for Next Generation Microbial Fuel Cells. Nano Energy 1: 3-5
    • (2012) Nano Energy , vol.1 , pp. 3-5
    • Gadhamshetty, V.1    Koratkar, N.2
  • 62
    • 77957020146 scopus 로고    scopus 로고
    • Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review
    • Upadhyayula VK, Gadhamshetty V (2010) Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review. Biotechnol Adv 28: 802-816.
    • (2010) Biotechnol Adv , vol.28 , pp. 802-816
    • Upadhyayula, V.K.1    Gadhamshetty, V.2
  • 64
    • 84904298260 scopus 로고    scopus 로고
    • Passivation of microbial corrosion using graphene coating
    • Carbon (In Press).
    • Krishnamoorthy A, Gadhamshetty V, Koratkar N (2013) Passivation of microbial corrosion using graphene coating, Carbon (In Press).
    • (2013)
    • Krishnamoorthy, A.1    Gadhamshetty, V.2    Koratkar, N.3
  • 65
    • 50349102284 scopus 로고    scopus 로고
    • Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell
    • Dumas C, Mollica A, Féron D, Basseguy R, Etcheverry L, et al. (2008) Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell. Bioresour Technol 99: 8887-8894.
    • (2008) Bioresour Technol , vol.99 , pp. 8887-8894
    • Dumas, C.1    Mollica, A.2    Féron, D.3    Basseguy, R.4    Etcheverry, L.5
  • 66
    • 63449110609 scopus 로고    scopus 로고
    • First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm
    • Erable B, Bergel A (2009) First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm. Bioresour Technol 100: 3302- 3307.
    • (2009) Bioresour Technol , vol.100 , pp. 3302-3307
    • Erable, B.1    Bergel, A.2
  • 67
    • 43049095141 scopus 로고    scopus 로고
    • Performance of non-porous graphite and titanium-based anodes in microbial fuel cells
    • Heijne A, Hamelers HVM, Saakes M, Buisman CJN (2008) Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochimica Acta 53: 5697-5703.
    • (2008) Electrochimica Acta , vol.53 , pp. 5697-5703
    • Heijne, A.1    Hamelers, H.V.M.2    Saakes, M.3    Buisman, C.J.N.4
  • 68
    • 78650586403 scopus 로고    scopus 로고
    • Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells
    • Fan Y, Xu S, Schaller R, Jiao J, Chaplen F, et al. (2011) Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosens Bioelectron 26: 1908-1912.
    • (2011) Biosens Bioelectron , vol.26 , pp. 1908-1912
    • Fan, Y.1    Xu, S.2    Schaller, R.3    Jiao, J.4    Chaplen, F.5
  • 69
    • 84870825986 scopus 로고    scopus 로고
    • Improved microbial fuel cell performance by encapsulating microbial cells with a nickel-coated sponge
    • Liu X, Du X, Wang X, Li N, Xu P, et al. (2013) Improved microbial fuel cell performance by encapsulating microbial cells with a nickel-coated sponge. Biosens Bioelectron 41: 848-851.
    • (2013) Biosens Bioelectron , vol.41 , pp. 848-851
    • Liu, X.1    Du, X.2    Wang, X.3    Li, N.4    Xu, P.5
  • 70
    • 84863229525 scopus 로고    scopus 로고
    • Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions
    • Chen S, Liu G, Zhang R, Qin B, Luo Y (2012) Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environ Sci Technol 46: 2467-2472.
    • (2012) Environ Sci Technol , vol.46 , pp. 2467-2472
    • Chen, S.1    Liu, G.2    Zhang, R.3    Qin, B.4    Luo, Y.5
  • 71
    • 84864566697 scopus 로고    scopus 로고
    • Microbial desalination cell with capacitive adsorption for ion migration control
    • Forrestal C, Xu P, Jenkins PE, Ren Z (2012) Microbial desalination cell with capacitive adsorption for ion migration control. Bioresour Technol 120: 332- 336.
    • (2012) Bioresour Technol , vol.120 , pp. 332-336
    • Forrestal, C.1    Xu, P.2    Jenkins, P.E.3    Ren, Z.4
  • 72
    • 84863524192 scopus 로고    scopus 로고
    • Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate
    • Morel A, Zuo K, Xia X, Wei J, Luo X, et al. (2012) Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate. Bioresour Technol 118: 43-48.
    • (2012) Bioresour Technol , vol.118 , pp. 43-48
    • Morel, A.1    Zuo, K.2    Xia, X.3    Wei, J.4    Luo, X.5
  • 73
    • 84860551236 scopus 로고    scopus 로고
    • Ionic composition and transport mechanisms in microbial desalination cell
    • Luo H, Xu P, Jenkins PE, Ren Z (2012) Ionic composition and transport mechanisms in microbial desalination cells. Journal of Membrane Science 409- 410: 16- 23.
    • (2012) Journal of Membrane Science , vol.409-410 , pp. 16-23
    • Luo, H.1    Xu, P.2    Jenkins, P.E.3    Ren, Z.4
  • 74
    • 84884211878 scopus 로고    scopus 로고
    • Increasing Desalination by Mitigating Anolyte pH Imbalance Using Catholyte Effluent Addition in a Multi-Anode Bench Scale Microbial Desalination Cell
    • Davis RJ, Kim Y, Logan BE. (2013) Increasing Desalination by Mitigating Anolyte pH Imbalance Using Catholyte Effluent Addition in a Multi-Anode Bench Scale Microbial Desalination Cell. Sustainable Chemistry & Engineering.
    • (2013) Sustainable Chemistry & Engineering
    • Davis, R.J.1    Kim, Y.2    Logan, B.E.3
  • 75
    • 78549283196 scopus 로고    scopus 로고
    • Reduction of pH buffer requirement in bioelectrochemical systems
    • Sleutels TH, Hamelers HV, Buisman CJ (2010) Reduction of pH buffer requirement in bioelectrochemical systems. Environ Sci Technol 44: 8259- 8263.
    • (2010) Environ Sci Technol , vol.44 , pp. 8259-8263
    • Sleutels, T.H.1    Hamelers, H.V.2    Buisman, C.J.3
  • 76
    • 84905468933 scopus 로고    scopus 로고
    • Algal-microbial desalination cells for clean energy, water, and biomass production
    • August 5-10, Washington DC, 2012
    • Gude VG (2012) Algal-microbial desalination cells for clean energy, water, and biomass production. proceedings of National Environmental Monitoring Conference, August 5-10, Washington DC, 2012
    • (2012) Proceedings of National Environmental Monitoring Conference
    • Gude, V.G.1
  • 78
    • 77953534552 scopus 로고    scopus 로고
    • Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs)
    • Wang X, Feng Y, Liu J, Lee H, Li C, et al. (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron 25: 2639-2643.36
    • (2010) Biosens Bioelectron , vol.25 , pp. 2639-2643
    • Wang, X.1    Feng, Y.2    Liu, J.3    Lee, H.4    Li, C.5
  • 79
    • 84905468934 scopus 로고    scopus 로고
    • Production of Algae in Conjunction with Wastewater Treatment
    • California Polytechnic State University, San Luis Obispo.
    • Lundquist TJ (2010) Production of Algae in Conjunction with Wastewater Treatment. Civil and Environmental Engineering Department, California Polytechnic State University, San Luis Obispo.
    • (2010) Civil and Environmental Engineering Department
    • Lundquist, T.J.1
  • 80
    • 65549159119 scopus 로고    scopus 로고
    • Revival of the biological sunlight-tobiogas energy conversion system
    • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-tobiogas energy conversion system. Biotechnol Bioeng 103: 296-304.
    • (2009) Biotechnol Bioeng , vol.103 , pp. 296-304
    • De Schamphelaire, L.1    Verstraete, W.2
  • 81
    • 84873525741 scopus 로고    scopus 로고
    • A new method for in situ nitrate removal from groundwater using submerged microbial desalination-denitrification cell (SMDDC)
    • Zhang Y, Angelidaki I (2013) A new method for in situ nitrate removal from groundwater using submerged microbial desalination-denitrification cell (SMDDC). Water Res 47: 1827-1836.
    • (2013) Water Res , vol.47 , pp. 1827-1836
    • Zhang, Y.1    Angelidaki, I.2
  • 82
    • 84870916681 scopus 로고    scopus 로고
    • Water softening using microbial desalination cell technology
    • Brastad KS, He Z (2013) Water softening using microbial desalination cell technology. Desalination 309: 32-37.
    • (2013) Desalination , vol.309 , pp. 32-37
    • Brastad, K.S.1    He, Z.2
  • 83
    • 80052218917 scopus 로고    scopus 로고
    • Domestic wastewater treatment as a net energy producer--can this be achieved?
    • McCarty PL, Bae J, Kim J (2011) Domestic wastewater treatment as a net energy producer--can this be achieved? Environ Sci Technol 45: 7100-7106.
    • (2011) Environ Sci Technol , vol.45 , pp. 7100-7106
    • McCarty, P.L.1    Bae, J.2    Kim, J.3
  • 85
    • 84904280310 scopus 로고
    • Desalination Research and Water Resources
    • Principles of Desalination, Academic Press.
    • Spiegler KS (1966) Desalination Research and Water Resources. In: Principles of Desalination, Academic Press.
    • (1966)
    • Spiegler, K.S.1
  • 86
    • 83155167713 scopus 로고    scopus 로고
    • Energy consumption and recovery in reverse osmosis
    • Gude VG (2011) Energy consumption and recovery in reverse osmosis. Desalination and water treatment 36: 239-260.
    • (2011) Desalination and water treatment , vol.36 , pp. 239-260
    • Gude, V.G.1
  • 88
    • 79951580644 scopus 로고    scopus 로고
    • Energy minimization strategies and renewable energy utilization for desalination: a review
    • Subramani A, Badruzzaman M, Oppenheimer J, Jacangelo JG (2011) Energy minimization strategies and renewable energy utilization for desalination: a review. Water Res 45: 1907-1920.
    • (2011) Water Res , vol.45 , pp. 1907-1920
    • Subramani, A.1    Badruzzaman, M.2    Oppenheimer, J.3    Jacangelo, J.G.4
  • 89
    • 80053630813 scopus 로고    scopus 로고
    • Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells
    • Kim Y, Logan BE (2011) Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proc Natl Acad Sci U S A 108: 16176-16181.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 16176-16181
    • Kim, Y.1    Logan, B.E.2
  • 90
    • 63049105185 scopus 로고    scopus 로고
    • Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria
    • He Z, Kan J, Mansfeld F, Angenent LT, Nealson KH (2009) Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ. Sci. Technol.43: 1648-1654
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 1648-1654
    • He, Z.1    Kan, J.2    Mansfeld, F.3    Angenent, L.T.4    Nealson, K.H.5
  • 91
    • 51349108665 scopus 로고    scopus 로고
    • Growth Kinetics of Chlorella vulgaris and Its Use as a Cathodic Half Cell
    • Powell EE, Mapiour ML, Evitts RW, Hill GA (2009) Growth Kinetics of Chlorella vulgaris and Its Use as a Cathodic Half Cell. Bioresource Technol. 100: 269- 274.
    • (2009) Bioresource Technol. , vol.100 , pp. 269-274
    • Powell, E.E.1    Mapiour, M.L.2    Evitts, R.W.3    Hill, G.A.4
  • 92
    • 78649296909 scopus 로고    scopus 로고
    • Microbial Fuel Cell With a Photosynthetic Microalgae Cathodic Half Cell Coupled to a Yeast Anodic Half Cell
    • Powell EE, Bolster J., Hill GA, Evitts RW (2011) Microbial Fuel Cell With a Photosynthetic Microalgae Cathodic Half Cell Coupled to a Yeast Anodic Half Cell. Energy Sources A 33: 440-448.
    • (2011) Energy Sources A , vol.33 , pp. 440-448
    • Powell, E.E.1    Bolster, J.2    Hill, G.A.3    Evitts, R.W.4
  • 93
    • 84863539144 scopus 로고    scopus 로고
    • Continuous Microbial Fuel Cell Using a Photoautotrophic Cathode and a Fermentative Anode
    • Mitra P, Hill GA (2012) Continuous Microbial Fuel Cell Using a Photoautotrophic Cathode and a Fermentative Anode. Can. J. Chem. Eng. 90: 1006-1010
    • (2012) Can. J. Chem. Eng. , vol.90 , pp. 1006-1010
    • Mitra, P.1    Hill, G.A.2
  • 96
    • 75349114734 scopus 로고    scopus 로고
    • Solar energy powered microbial fuel cell with a reversible bioelectrode
    • Strik DP, Hamelers HV, Buisman CJ (2010) Solar energy powered microbial fuel cell with a reversible bioelectrode. Environ Sci Technol 44: 532-537.
    • (2010) Environ Sci Technol , vol.44 , pp. 532-537
    • Strik, D.P.1    Hamelers, H.V.2    Buisman, C.J.3
  • 98
    • 65649091326 scopus 로고    scopus 로고
    • A self assembling self-repairing microbial photoelectrochemical solar cell
    • Malik S, Drott E, Grisdela P, Lee J, Lee C et al. (2009) A self assembling self-repairing microbial photoelectrochemical solar cell. Energy Environ. Sci. 2: 292-298.
    • (2009) Energy Environ. Sci. , vol.2 , pp. 292-298
    • Malik, S.1    Drott, E.2    Grisdela, P.3    Lee, J.4    Lee, C.5
  • 99
    • 67749116349 scopus 로고    scopus 로고
    • A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction
    • Cao X.X, Huang X, Liang P, Boon N, Fan MZ et al. (2009) A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ. Sci. 2: 498-501.
    • (2009) Energy Environ. Sci. , vol.2 , pp. 498-501
    • Cao, X.X.1    Huang, X.2    Liang, P.3    Boon, N.4    Fan, M.Z.5
  • 100
  • 101
    • 77951878868 scopus 로고    scopus 로고
    • Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells
    • Zou Y, Pisciotta J, Baskakov IV (2010) Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells. Bioelectrochemistry 79: 50-56.
    • (2010) Bioelectrochemistry , vol.79 , pp. 50-56
    • Zou, Y.1    Pisciotta, J.2    Baskakov, I.V.3
  • 102
    • 84904369854 scopus 로고    scopus 로고
    • Bio-Photo-Voltaic Cells (Photosynthetic - Microbial Fuel Cells)
    • PhD Dissertation, University of Bath, Bath, UK.
    • Thorne R (2011) Bio-Photo-Voltaic Cells (Photosynthetic - Microbial Fuel Cells). PhD Dissertation, University of Bath, Bath, UK.
    • (2011)
    • Thorne, R.1
  • 104
    • 27444442858 scopus 로고    scopus 로고
    • Direct mediatorless electron transport between the monolayer of photosystem II and poly(mercapto-p-benzoquinone) modified gold electrode--new design of biosensor for herbicide detection
    • Maly J, Masojidek J, Masci A, Ilie M, Cianci E, et al. (2005) Direct mediatorless electron transport between the monolayer of photosystem II and poly(mercapto-p-benzoquinone) modified gold electrode--new design of biosensor for herbicide detection. Biosens Bioelectron 21: 923-932.
    • (2005) Biosens Bioelectron , vol.21 , pp. 923-932
    • Maly, J.1    Masojidek, J.2    Masci, A.3    Ilie, M.4    Cianci, E.5
  • 105
    • 33750331153 scopus 로고    scopus 로고
    • Light-driven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device
    • Badura A, Esper B, Ataka K, Grunwald C, Wöll C, et al. (2006) Light-driven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device. Photochem Photobiol 82: 1385-1390.
    • (2006) Photochem Photobiol , vol.82 , pp. 1385-1390
    • Badura, A.1    Esper, B.2    Ataka, K.3    Grunwald, C.4    Wöll, C.5
  • 106
    • 0018947981 scopus 로고
    • Photoelectrochemical conversion using reactioncenter electrodes
    • Janzen AF, Seibert M (1980) Photoelectrochemical conversion using reactioncenter electrodes. Nature 286: 584-585.
    • (1980) Nature , vol.286 , pp. 584-585
    • Janzen, A.F.1    Seibert, M.2
  • 107
    • 1042287247 scopus 로고    scopus 로고
    • Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode
    • Amao Y, Komori T (2004) Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode. Biosens Bioelectron 19: 843-847.
    • (2004) Biosens Bioelectron , vol.19 , pp. 843-847
    • Amao, Y.1    Komori, T.2
  • 111
    • 42149113983 scopus 로고    scopus 로고
    • Plant/microbe cooperation for electricity generation in a rice paddy field
    • Kaku N, Yonezawa N, Kodama Y, Watanabe K (2008) Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol 79: 43-49.
    • (2008) Appl Microbiol Biotechnol , vol.79 , pp. 43-49
    • Kaku, N.1    Yonezawa, N.2    Kodama, Y.3    Watanabe, K.4
  • 112
    • 0025644974 scopus 로고
    • Substrate flow in the rhizosphere
    • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129: 1-10.
    • (1990) Plant Soil , vol.129 , pp. 1-10
    • Lynch, J.M.1    Whipps, J.M.2
  • 113
    • 76049092471 scopus 로고    scopus 로고
    • Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax
    • Helder M, Strik DP, Hamelers HV, Kuhn AJ, Blok C, et al. (2010) Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresour Technol 101: 3541-3547.
    • (2010) Bioresour Technol , vol.101 , pp. 3541-3547
    • Helder, M.1    Strik, D.P.2    Hamelers, H.V.3    Kuhn, A.J.4    Blok, C.5
  • 114
    • 77951089256 scopus 로고    scopus 로고
    • Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system
    • Ryu W, Bai SJ, Park JS, Huang Z, Moseley J, et al. (2010) Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system. Nano Lett 10: 1137-1143.
    • (2010) Nano Lett , vol.10 , pp. 1137-1143
    • Ryu, W.1    Bai, S.J.2    Park, J.S.3    Huang, Z.4    Moseley, J.5
  • 115
    • 0032847945 scopus 로고    scopus 로고
    • Effects of glucose addition and light on current outputs in photosynthetic electrochemical cells using Synechocystis sp
    • Yagishita T, Sawayama S, Tsukahara K, Ogi T (1999) Effects of glucose addition and light on current outputs in photosynthetic electrochemical cells using Synechocystis sp. PCC6714. J Biosci Bioeng 88: 210-214.
    • (1999) PCC6714. J Biosci Bioeng , vol.88 , pp. 210-214
    • Yagishita, T.1    Sawayama, S.2    Tsukahara, K.3    Ogi, T.4
  • 116
    • 33846093956 scopus 로고    scopus 로고
    • Micromachined microbial and photosynthetic fuel cells
    • Chiao M, Lam KB, and Lin LW (2006) Micromachined microbial and photosynthetic fuel cells. J Micromech Microeng 16: 2547-2553.
    • (2006) J Micromech Microeng , vol.16 , pp. 2547-2553
    • Chiao, M.1    Lam, K.B.2    Lin, L.W.3
  • 117
    • 0031281672 scopus 로고    scopus 로고
    • Effects of intensity of incident light and concentrations ofSynechococcus s and 2-hydroxy-1,4- naphthoquinone on the current output of photosynthetic electrochemical cell
    • Yagishita T, Sawayama S, Tsukahara KI, Ogi T (1997) Effects of intensity of incident light and concentrations ofSynechococcus sp. and 2-hydroxy-1,4- naphthoquinone on the current output of photosynthetic electrochemical cell. Sol Energy 61: 347-353.
    • (1997) Sol Energy , vol.61 , pp. 347-353
    • Yagishita, T.1    Sawayama, S.2    Tsukahara, K.I.3    Ogi, T.4
  • 118
    • 23844528692 scopus 로고    scopus 로고
    • Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell
    • Rosenbaum M, Schröder U, Scholz F (2005) Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Appl Microbiol Biotechnol 68: 753-756.
    • (2005) Appl Microbiol Biotechnol , vol.68 , pp. 753-756
    • Rosenbaum, M.1    Schröder, U.2    Scholz, F.3
  • 119
    • 0033759410 scopus 로고    scopus 로고
    • Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii
    • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122: 127-136.
    • (2000) Plant Physiol , vol.122 , pp. 127-136
    • Melis, A.1    Zhang, L.2    Forestier, M.3    Ghirardi, M.L.4    Seibert, M.5
  • 120
    • 0039808935 scopus 로고
    • Bioelectrochemical energy conversion
    • Berk RS, Canfield JH (1964) BIOELECTROCHEMICAL ENERGY CONVERSION. Appl Microbiol 12: 10-12.
    • (1964) Appl Microbiol , vol.12 , pp. 10-12
    • Berk, R.S.1    Canfield, J.H.2
  • 121
    • 27744591716 scopus 로고    scopus 로고
    • Algae acquire vitamin B12 through a symbiotic relationship with bacteria
    • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438: 90-93.
    • (2005) Nature , vol.438 , pp. 90-93
    • Croft, M.T.1    Lawrence, A.D.2    Raux-Deery, E.3    Warren, M.J.4    Smith, A.G.5
  • 122
    • 57249095891 scopus 로고    scopus 로고
    • Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)
    • Strik DP, Terlouw H, Hamelers HV, Buisman CJ (2008) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81: 659-668.
    • (2008) Appl Microbiol Biotechnol , vol.81 , pp. 659-668
    • Strik, D.P.1    Terlouw, H.2    Hamelers, H.V.3    Buisman, C.J.4
  • 123
    • 84862134807 scopus 로고    scopus 로고
    • A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation
    • Jiang H, Luo S, Shi X, Dai M, Guo RB (2012) A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation. Biotechnol Lett 34: 1269-1274.
    • (2012) Biotechnol Lett , vol.34 , pp. 1269-1274
    • Jiang, H.1    Luo, S.2    Shi, X.3    Dai, M.4    Guo, R.B.5
  • 124
    • 84890467526 scopus 로고    scopus 로고
    • A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation
    • Jiang H, Luo S, Shi X, Dai M, Guo RB (2013) A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation. J Cent South Univ.20: 488-494.
    • (2013) J Cent South Univ , vol.20 , pp. 488-494
    • Jiang, H.1    Luo, S.2    Shi, X.3    Dai, M.4    Guo, R.B.5
  • 125
    • 58149133820 scopus 로고    scopus 로고
    • Engineering microbial fuels cells: recent patents and new directions
    • Biffinger JC, Ringeisen BR (2008) Engineering microbial fuels cells: recent patents and new directions. Recent Pat Biotechnol 2: 150-155.
    • (2008) Recent Pat Biotechnol , vol.2 , pp. 150-155
    • Biffinger, J.C.1    Ringeisen, B.R.2
  • 126
    • 84872540984 scopus 로고    scopus 로고
    • Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell
    • Helder M, Chen W-S, Van der Harst EJM, Strik DPBTB, Hamelers HVM et al. (2013) Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell. Biofuels Bioprod Bioref 7: 52-64.
    • (2013) Biofuels Bioprod Bioref , vol.7 , pp. 52-64
    • Helder, M.1    Chen, W.-S.2    Van Der Harst, E.J.M.3    Strik, D.P.B.T.B.4    Hamelers, H.V.M.5
  • 127
    • 84866723073 scopus 로고    scopus 로고
    • Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination
    • Wen Q, Zhang H, Chen Z, Li Y, Nan J, et al. (2012) Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination. Bioresour Technol 125: 108-113.
    • (2012) Bioresour Technol , vol.125 , pp. 108-113
    • Wen, Q.1    Zhang, H.2    Chen, Z.3    Li, Y.4    Nan, J.5
  • 128
    • 84875532295 scopus 로고    scopus 로고
    • Salt removal using multiple microbial desalination cells under continuous flow conditions
    • Qu Y, Feng Y, Liu J, He W, Shi X, Yang Q, Lv J, Logan BE (2013) Salt removal using multiple microbial desalination cells under continuous flow conditions. Desalination 317: 17-22.
    • (2013) Desalination , vol.317 , pp. 17-22
    • Qu, Y.1    Feng, Y.2    Liu, J.3    He, W.4    Shi, X.5    Yang, Q.6    Lv, J.7    Logan, B.E.8
  • 129
    • 84864814681 scopus 로고    scopus 로고
    • Microbial desalination cells with ion exchange resin packed to enhance desalination at low salt concentration
    • Zhang F, Chen M, Zhang Y, Zeng RJ (2012) Microbial desalination cells with ion exchange resin packed to enhance desalination at low salt concentration. Journal of Membrane Science 417-418: 28-33.
    • (2012) Journal of Membrane Science , vol.417-418 , pp. 28-33
    • Zhang, F.1    Chen, M.2    Zhang, Y.3    Zeng, R.J.4
  • 130
    • 84877353684 scopus 로고    scopus 로고
    • Improving water desalination by hydraulically coupling an osmotic microbial fuel cell with a microbial desalination cell
    • Bo Z, He Z (2013) Improving water desalination by hydraulically coupling an osmotic microbial fuel cell with a microbial desalination cell. Journal of Membrane science 441: 18-24.
    • (2013) Journal of Membrane science , vol.441 , pp. 18-24
    • Bo, Z.1    He, Z.2
  • 131
    • 84867546622 scopus 로고    scopus 로고
    • Energy production, use and saving in a bioelectrochemical desalination system
    • Zhang B, He Z (2012) Energy production, use and saving in a bioelectrochemical desalination system. RSC Advances 2: 10673-10679.
    • (2012) RSC Advances , vol.2 , pp. 10673-10679
    • Zhang, B.1    He, Z.2
  • 132
    • 84859955174 scopus 로고    scopus 로고
    • Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells
    • Juang DF, Yang PC, Kuo TH (2012) Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells. Int J Environ. Sci Technol 9: 267-280.
    • (2012) Int J Environ. Sci Technol , vol.9 , pp. 267-280
    • Juang, D.F.1    Yang, P.C.2    Kuo, T.H.3
  • 133
    • 80053298770 scopus 로고    scopus 로고
    • Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC)
    • Zhang Y, Noori JS, Angelidaki I (2011) Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy Environ Sci 4: 4340-4346.
    • (2011) Energy Environ Sci , vol.4 , pp. 4340-4346
    • Zhang, Y.1    Noori, J.S.2    Angelidaki, I.3
  • 134
    • 84856562053 scopus 로고    scopus 로고
    • Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment
    • Pandit S, Nayak BK, Das D (2012) Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment. Bioresour Technol 107: 97-102.
    • (2012) Bioresour Technol , vol.107 , pp. 97-102
    • Pandit, S.1    Nayak, B.K.2    Das, D.3
  • 135
    • 84861403761 scopus 로고    scopus 로고
    • Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris
    • Zhou M, He H, Jin T, Wang H (2012) Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. Journal of Power Sources 214: 216-219.
    • (2012) Journal of Power Sources , vol.214 , pp. 216-219
    • Zhou, M.1    He, H.2    Jin, T.3    Wang, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.