메뉴 건너뛰기




Volumn 102, Issue 1, 2011, Pages 316-323

Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells

Author keywords

Biocathode; Electrode material; Exoelectrotroph; Microbial fuel cell; Solution chemistry

Indexed keywords

BIOCATHODES; BIOLOGICAL ASPECTS; BROAD APPLICATION; ELECTRICAL CURRENT; ELECTRICITY GENERATION; ELECTRODE MATERIAL; ELECTRON ACCEPTOR; ELECTRON TRANSFER MECHANISMS; ENGINEERING DEVELOPMENT; EXOELECTROTROPH; LOW COSTS; NEW APPLICATIONS; NUTRIENT REMOVAL; OPERATIONAL SUSTAINABILITY; SOLUTION CHEMISTRY;

EID: 77957348875     PISSN: 09608524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.biortech.2010.06.096     Document Type: Article
Times cited : (320)

References (89)
  • 2
    • 63449140090 scopus 로고    scopus 로고
    • Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell
    • Aldrovandi A., Marsili E., Stante L., Paganin P., Tabacchioni S., Giordano A. Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell. Bioresource Technol. 2009, 100:3252-3260.
    • (2009) Bioresource Technol. , vol.100 , pp. 3252-3260
    • Aldrovandi, A.1    Marsili, E.2    Stante, L.3    Paganin, P.4    Tabacchioni, S.5    Giordano, A.6
  • 3
    • 34247098528 scopus 로고    scopus 로고
    • Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE
    • Aulenta F., Catervi A., Majone M., Panero S., Reale P., Rossetti S. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ. Sci. Technol. 2007, 41:2554-2559.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 2554-2559
    • Aulenta, F.1    Catervi, A.2    Majone, M.3    Panero, S.4    Reale, P.5    Rossetti, S.6
  • 4
    • 49749101275 scopus 로고    scopus 로고
    • 2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system
    • 2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system. Environ. Sci. Technol. 2008, 42:6185-6190.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 6185-6190
    • Aulenta, F.1    Canosa, A.2    Majone, M.3    Panero, S.4    Reale, P.5    Rossetti, S.6
  • 5
    • 64749102025 scopus 로고    scopus 로고
    • Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators
    • Aulenta F., Canosa A., Reale P., Rossetti S., Panero S., Majone M. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol. Bioeng. 2009, 103:85-91.
    • (2009) Biotechnol. Bioeng. , vol.103 , pp. 85-91
    • Aulenta, F.1    Canosa, A.2    Reale, P.3    Rossetti, S.4    Panero, S.5    Majone, M.6
  • 6
    • 77952313692 scopus 로고    scopus 로고
    • Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethane
    • Aulenta F., Reale P., Canosa A., Rossetti S., Panero S., Majone M. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethane. Biosens. Bioelectron. 2010, 25:1796-1802.
    • (2010) Biosens. Bioelectron. , vol.25 , pp. 1796-1802
    • Aulenta, F.1    Reale, P.2    Canosa, A.3    Rossetti, S.4    Panero, S.5    Majone, M.6
  • 7
    • 71049150113 scopus 로고    scopus 로고
    • Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode
    • Behera M., Jana P.S., Ghangrekar J.M.M. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource Technol. 2010, 101:1183-1189.
    • (2010) Bioresource Technol. , vol.101 , pp. 1183-1189
    • Behera, M.1    Jana, P.S.2    Ghangrekar, J.M.M.3
  • 8
    • 23844474099 scopus 로고    scopus 로고
    • Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm
    • Bergel A., Féron D., Mollica A. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Commun. 2005, 7:900-904.
    • (2005) Electrochem. Commun. , vol.7 , pp. 900-904
    • Bergel, A.1    Féron, D.2    Mollica, A.3
  • 9
    • 33847228809 scopus 로고    scopus 로고
    • Diversifying biological fuel cell designs by use of nanoporous filters
    • Biffinger J.C., Ray R., Little B., Ringeisen B.R. Diversifying biological fuel cell designs by use of nanoporous filters. Environ. Sci. Technol. 2007, 41:1444-1449.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 1444-1449
    • Biffinger, J.C.1    Ray, R.2    Little, B.3    Ringeisen, B.R.4
  • 11
    • 26844498593 scopus 로고    scopus 로고
    • Electrochemical polarization-induced changes in the growth of individual cells and biofilms of Pseudomonas fluorescens (ATCC 17552)
    • Busalmen J.P., De Sanchez S.R. Electrochemical polarization-induced changes in the growth of individual cells and biofilms of Pseudomonas fluorescens (ATCC 17552). Appl. Environ. Microbiol. 2005, 71:6235-6240.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 6235-6240
    • Busalmen, J.P.1    De Sanchez, S.R.2
  • 12
    • 67749116349 scopus 로고    scopus 로고
    • A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction
    • Cao X., Huang X., Liang P., Boon N., Fan M., Zhang L., Zhang X. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ. Sci. 2009, 2:441-548.
    • (2009) Energy Environ. Sci. , vol.2 , pp. 441-548
    • Cao, X.1    Huang, X.2    Liang, P.3    Boon, N.4    Fan, M.5    Zhang, L.6    Zhang, X.7
  • 13
    • 39049117489 scopus 로고    scopus 로고
    • Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells
    • Chae K.J., Choi M., Ajayi F.F., Park W., Chang I.S., Kim I.S. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energ. Fuel. 2008, 22:169-176.
    • (2008) Energ. Fuel. , vol.22 , pp. 169-176
    • Chae, K.J.1    Choi, M.2    Ajayi, F.F.3    Park, W.4    Chang, I.S.5    Kim, I.S.6
  • 14
    • 43949088801 scopus 로고    scopus 로고
    • Application of biocathode in microbial fuel cells: cell performance and microbial community
    • Chen G.W., Choi S.J., Lee T.H., Lee G.Y., Cha J.H., Kim C.W. Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl. Microbiol. Biotechnol. 2008, 79:379-388.
    • (2008) Appl. Microbiol. Biotechnol. , vol.79 , pp. 379-388
    • Chen, G.W.1    Choi, S.J.2    Lee, T.H.3    Lee, G.Y.4    Cha, J.H.5    Kim, C.W.6
  • 15
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • Cheng S.A., Xing D.F., Call D.F., Logan B.E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 2009, 43:3953-3958.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 3953-3958
    • Cheng, S.A.1    Xing, D.F.2    Call, D.F.3    Logan, B.E.4
  • 16
    • 75349088069 scopus 로고    scopus 로고
    • Anodophilic biofilm catalyzes cathodic oxygen reduction
    • Cheng K.Y., Ho G., Cord-Ruwisch R. Anodophilic biofilm catalyzes cathodic oxygen reduction. Environ. Sci. Technol. 2010, 44:518-525.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 518-525
    • Cheng, K.Y.1    Ho, G.2    Cord-Ruwisch, R.3
  • 22
    • 77949654987 scopus 로고    scopus 로고
    • Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive
    • Cournet A., Délia M.-L., Bergel A., Roques C., Bergé M. Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive. Electrochem. Commun. 2010, 12:505-508.
    • (2010) Electrochem. Commun. , vol.12 , pp. 505-508
    • Cournet, A.1    Délia, M.-L.2    Bergel, A.3    Roques, C.4    Bergé, M.5
  • 23
    • 0000654205 scopus 로고
    • Effect of seawater biofilms on corrosion potential and oxygen reduction of stainless-steel
    • Dexter S.C., Gao G.Y. Effect of seawater biofilms on corrosion potential and oxygen reduction of stainless-steel. Corrosion 1988, 44:717-723.
    • (1988) Corrosion , vol.44 , pp. 717-723
    • Dexter, S.C.1    Gao, G.Y.2
  • 24
    • 35148847389 scopus 로고    scopus 로고
    • Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials
    • Dumas C., Mollica A., Féron D., Basséguy R., Etcheverry L., Bergel A. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials. Electrochim. Acta 2007, 53:468-473.
    • (2007) Electrochim. Acta , vol.53 , pp. 468-473
    • Dumas, C.1    Mollica, A.2    Féron, D.3    Basséguy, R.4    Etcheverry, L.5    Bergel, A.6
  • 25
    • 37349062455 scopus 로고    scopus 로고
    • Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes
    • Dumas C., Basseguy R., Bergel A. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim. Acta 2008, 53:2494-2500.
    • (2008) Electrochim. Acta , vol.53 , pp. 2494-2500
    • Dumas, C.1    Basseguy, R.2    Bergel, A.3
  • 26
    • 77950339768 scopus 로고    scopus 로고
    • Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell
    • Duteanu N., Erable B., Senthil Kumar S.M., Ghangrekar M.M., Scott K. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell. Biores. Technol. 2010, 101:5250-5255.
    • (2010) Biores. Technol. , vol.101 , pp. 5250-5255
    • Duteanu, N.1    Erable, B.2    Senthil Kumar, S.M.3    Ghangrekar, M.M.4    Scott, K.5
  • 27
    • 0029164083 scopus 로고
    • Mechanism of biologically produced ennoblement: ecological perspectives and a hypothetical model
    • Eashwar M., Maruthamuthu S. Mechanism of biologically produced ennoblement: ecological perspectives and a hypothetical model. Biofouling 1995, 8:203-213.
    • (1995) Biofouling , vol.8 , pp. 203-213
    • Eashwar, M.1    Maruthamuthu, S.2
  • 28
    • 0027540663 scopus 로고
    • Microbiologically influenced corrosion of steel during putrefaction of seawater - evidence for a new mechanism
    • Eashwar M., Chandrasekaran P., Subramanian G., Balakrishnan K. Microbiologically influenced corrosion of steel during putrefaction of seawater - evidence for a new mechanism. Corrosion 1993, 49:108-113.
    • (1993) Corrosion , vol.49 , pp. 108-113
    • Eashwar, M.1    Chandrasekaran, P.2    Subramanian, G.3    Balakrishnan, K.4
  • 29
    • 37349000206 scopus 로고    scopus 로고
    • Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacterium with oxide electrodes: a candidate biofuel cell system
    • Eggleston C.M., Vörös J., Shi L., Lower B.H., Droubay T.C., Colberg P.J.S. Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacterium with oxide electrodes: a candidate biofuel cell system. Inorg. Chim. Acta 2008, 361:769-777.
    • (2008) Inorg. Chim. Acta , vol.361 , pp. 769-777
    • Eggleston, C.M.1    Vörös, J.2    Shi, L.3    Lower, B.H.4    Droubay, T.C.5    Colberg, P.J.S.6
  • 31
    • 34548451055 scopus 로고    scopus 로고
    • Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration
    • Fan Y., Hu H., Liu H. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Sources 2007, 171:348-354.
    • (2007) J. Power Sources , vol.171 , pp. 348-354
    • Fan, Y.1    Hu, H.2    Liu, H.3
  • 33
    • 40749123642 scopus 로고    scopus 로고
    • Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells
    • Freguia S., Rabaey K., Yuan Z., Keller J. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res. 2008, 42:1387-1396.
    • (2008) Water Res. , vol.42 , pp. 1387-1396
    • Freguia, S.1    Rabaey, K.2    Yuan, Z.3    Keller, J.4
  • 34
    • 70549089986 scopus 로고    scopus 로고
    • Electron transfer pathways in microbial oxygen biocathodes
    • Freguia S., Tsujimura S., Kano K. Electron transfer pathways in microbial oxygen biocathodes. Electronchim. Acta 2010, 55:813-818.
    • (2010) Electronchim. Acta , vol.55 , pp. 813-818
    • Freguia, S.1    Tsujimura, S.2    Kano, K.3
  • 35
    • 27744521813 scopus 로고    scopus 로고
    • Remediation and recovery of uranium from contaminated subsurface environments with electrodes
    • Gregory K.B., Lovley D.R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 2005, 39:8943-8947.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 8943-8947
    • Gregory, K.B.1    Lovley, D.R.2
  • 36
    • 70350570447 scopus 로고    scopus 로고
    • Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum versus iron(II) phthalocyanine based electrodes
    • Harnisch F., Wirth S., Schröder U. Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum versus iron(II) phthalocyanine based electrodes. Electrochem. Commun. 2009, 11:2253-2256.
    • (2009) Electrochem. Commun. , vol.11 , pp. 2253-2256
    • Harnisch, F.1    Wirth, S.2    Schröder, U.3
  • 37
    • 33750443594 scopus 로고    scopus 로고
    • Application of bacterial biocathodes in microbial fuel cells
    • He Z., Angenent L.T. Application of bacterial biocathodes in microbial fuel cells. Electroanal. 2006, 18:2009-2015.
    • (2006) Electroanal. , vol.18 , pp. 2009-2015
    • He, Z.1    Angenent, L.T.2
  • 38
    • 44049104410 scopus 로고    scopus 로고
    • Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells
    • Huang L., Angelidaki I. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells. Biotechnol. Bioeng. 2008, 100:413-422.
    • (2008) Biotechnol. Bioeng. , vol.100 , pp. 413-422
    • Huang, L.1    Angelidaki, I.2
  • 39
    • 77958092093 scopus 로고    scopus 로고
    • Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell
    • Huang L., Chen J., Quan X., Yang F. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioproc. Biosyst. Eng. 2010, 10.1007/s00449-010-0417-7.
    • (2010) Bioproc. Biosyst. Eng.
    • Huang, L.1    Chen, J.2    Quan, X.3    Yang, F.4
  • 40
  • 41
    • 0034203542 scopus 로고    scopus 로고
    • Effect of surface roughness of porcelain on adhesion of bacteria and their synthesizing glucans
    • Kawai K., Urano M., Ebisu S. Effect of surface roughness of porcelain on adhesion of bacteria and their synthesizing glucans. J. Prosthet. Dent. 2000, 83:664-667.
    • (2000) J. Prosthet. Dent. , vol.83 , pp. 664-667
    • Kawai, K.1    Urano, M.2    Ebisu, S.3
  • 42
    • 0344780799 scopus 로고    scopus 로고
    • A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens
    • Kim H.J., Hyun M.S., Chang I.S., Kim B.H. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 1999, 9:365-367.
    • (1999) J. Microbiol. Biotechnol. , vol.9 , pp. 365-367
    • Kim, H.J.1    Hyun, M.S.2    Chang, I.S.3    Kim, B.H.4
  • 43
    • 33846842443 scopus 로고    scopus 로고
    • Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells
    • Kim J.R., Cheng S., Oh S.E., Logan B.E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 2007, 41:1004-1009.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 1004-1009
    • Kim, J.R.1    Cheng, S.2    Oh, S.E.3    Logan, B.E.4
  • 44
    • 71049186062 scopus 로고    scopus 로고
    • Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate
    • Kim J.R., Premier G.C., Hawkes F.R., Rodríguez J., Dinsdale R.M., Guwy A.J. Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate. Bioresource Technol. 2010, 101:1190-1198.
    • (2010) Bioresource Technol. , vol.101 , pp. 1190-1198
    • Kim, J.R.1    Premier, G.C.2    Hawkes, F.R.3    Rodríguez, J.4    Dinsdale, R.M.5    Guwy, A.J.6
  • 46
    • 53549133386 scopus 로고    scopus 로고
    • A microbial fuel cell equipped with a biocathode for organic removal and denitrification
    • Lefebvre O., Al-Mamun A., Ng H.Y. A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci. Technol. 2008, 58:881-885.
    • (2008) Water Sci. Technol. , vol.58 , pp. 881-885
    • Lefebvre, O.1    Al-Mamun, A.2    Ng, H.Y.3
  • 47
    • 67449114024 scopus 로고    scopus 로고
    • Evaluation of applied cathode potential to enhance biocathode in microbial fuel cells
    • Liang P., Fan M.Z., Cao X.X., Huang X. Evaluation of applied cathode potential to enhance biocathode in microbial fuel cells. J. Chem. Technol. Biotechnol. 2009, 84:794-799.
    • (2009) J. Chem. Technol. Biotechnol. , vol.84 , pp. 794-799
    • Liang, P.1    Fan, M.Z.2    Cao, X.X.3    Huang, X.4
  • 48
    • 64749084426 scopus 로고    scopus 로고
    • Exoelectrogenic bacteria that power microbial fuel cells
    • Logan B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7:375-381.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 375-381
    • Logan, B.E.1
  • 49
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan B.E. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 2010, 85:1665-1671.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1665-1671
    • Logan, B.E.1
  • 50
    • 0036316135 scopus 로고    scopus 로고
    • Hydrogenase activity control at Desulfovibrio vulgaris cell-coated carbon electrodes: Biochemical and chemical factors influencing the mediated bioelectrocatalysis
    • Lojou E., Durand M.C., Dolla A., Bianco P. Hydrogenase activity control at Desulfovibrio vulgaris cell-coated carbon electrodes: Biochemical and chemical factors influencing the mediated bioelectrocatalysis. Electroanalysis 2002, 14:913-922.
    • (2002) Electroanalysis , vol.14 , pp. 913-922
    • Lojou, E.1    Durand, M.C.2    Dolla, A.3    Bianco, P.4
  • 51
    • 57049119571 scopus 로고    scopus 로고
    • The microbe electric: conversion of organic matter to electricity
    • Lovley D.R. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol. 2008, 19:564-571.
    • (2008) Curr. Opin. Biotechnol. , vol.19 , pp. 564-571
    • Lovley, D.R.1
  • 52
    • 12244286760 scopus 로고    scopus 로고
    • Effect of direct electric current on the cell surface properties of phenol-degrading bacteria
    • Luo Q.S., Wang H., Zhang X.H., Qian Y. Effect of direct electric current on the cell surface properties of phenol-degrading bacteria. Appl. Environ. Microbiol. 2005, 71:423-427.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 423-427
    • Luo, Q.S.1    Wang, H.2    Zhang, X.H.3    Qian, Y.4
  • 54
    • 0000485030 scopus 로고
    • The effect of marine fouling on the ennoblement of electrode potential for stainless steels
    • Motoda S., Suzuki Y., Shinohara T. The effect of marine fouling on the ennoblement of electrode potential for stainless steels. Corros. Sci. 1990, 31:515-520.
    • (1990) Corros. Sci. , vol.31 , pp. 515-520
    • Motoda, S.1    Suzuki, Y.2    Shinohara, T.3
  • 56
    • 0034604081 scopus 로고    scopus 로고
    • A role for excreted quinones in extracellular electron transfer
    • Newman D.K., Kolter R. A role for excreted quinones in extracellular electron transfer. Nature 2000, 405:94-97.
    • (2000) Nature , vol.405 , pp. 94-97
    • Newman, D.K.1    Kolter, R.2
  • 57
    • 36849083009 scopus 로고    scopus 로고
    • Carbon and steel surfaces modified by Leptothrix discophora SP-6: characterization and implications
    • Nguyen T.A., Lu Y., Yang X., Shi X. Carbon and steel surfaces modified by Leptothrix discophora SP-6: characterization and implications. Environ. Sci. Technol. 2007, 41:7987-7996.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 7987-7996
    • Nguyen, T.A.1    Lu, Y.2    Yang, X.3    Shi, X.4
  • 58
    • 74549151753 scopus 로고    scopus 로고
    • A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
    • Pant D., Bogaert G.V., Diels L., Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Biores. Technol. 2010, 101:1533-1543.
    • (2010) Biores. Technol. , vol.101 , pp. 1533-1543
    • Pant, D.1    Bogaert, G.V.2    Diels, L.3    Vanbroekhoven, K.4
  • 59
    • 27744467795 scopus 로고    scopus 로고
    • Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor
    • Park H., Kim D.K., Choi Y.J., Park D. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. Process Biochem. 2005, 40:3383-3388.
    • (2005) Process Biochem. , vol.40 , pp. 3383-3388
    • Park, H.1    Kim, D.K.2    Choi, Y.J.3    Park, D.4
  • 60
    • 51349108665 scopus 로고    scopus 로고
    • Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell
    • Powell E.E., Mapiour M.L., Evitts R.W., Hill G.A. Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresource Technol. 2009, 100:269-274.
    • (2009) Bioresource Technol. , vol.100 , pp. 269-274
    • Powell, E.E.1    Mapiour, M.L.2    Evitts, R.W.3    Hill, G.A.4
  • 61
    • 0029193280 scopus 로고
    • The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in Man A review of the literature
    • Quirynen M., Bollen C.M. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in Man A review of the literature. J. Clin. Periodontol. 1995, 22:1-14.
    • (1995) J. Clin. Periodontol. , vol.22 , pp. 1-14
    • Quirynen, M.1    Bollen, C.M.2
  • 63
    • 20744456285 scopus 로고    scopus 로고
    • Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant
    • Rhoads A., Beyenal H., Lewandowski Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 2005, 39:4666-4671.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 4666-4671
    • Rhoads, A.1    Beyenal, H.2    Lewandowski, Z.3
  • 66
    • 78649904780 scopus 로고    scopus 로고
    • Effect of the electron-acceptors on the performance of a MFC
    • Rodrigo M.A., Cañizares P., Lobato J. Effect of the electron-acceptors on the performance of a MFC. Bioresource Technol. 2010, 101:7014-7018.
    • (2010) Bioresource Technol. , vol.101 , pp. 7014-7018
    • Rodrigo, M.A.1    Cañizares, P.2    Lobato, J.3
  • 67
    • 33748545968 scopus 로고    scopus 로고
    • Effects of membrane cation transport on pH and microbial fuel cell performance
    • Rozendal R.A., Hamelers H.V.M., Buisman C.J.N. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 2006, 40:5206-5211.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5206-5211
    • Rozendal, R.A.1    Hamelers, H.V.M.2    Buisman, C.J.N.3
  • 70
    • 0021788451 scopus 로고
    • The influence of marine aerobic microbial film on stainless steel corrosion behaviour
    • Scotto V., DiCintio R., Marcenaro G. The influence of marine aerobic microbial film on stainless steel corrosion behaviour. Corros. Sci. 1985, 25:185-194.
    • (1985) Corros. Sci. , vol.25 , pp. 185-194
    • Scotto, V.1    DiCintio, R.2    Marcenaro, G.3
  • 73
    • 65649096023 scopus 로고    scopus 로고
    • Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes
    • Sleutels T.H.J.A., Hameler H.V.M., Rozendal R.A., Buisman C.J.N. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int. J. Hydrogen Energy 2009, 34:3612-3620.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 3612-3620
    • Sleutels, T.H.J.A.1    Hameler, H.V.M.2    Rozendal, R.A.3    Buisman, C.J.N.4
  • 75
  • 79
    • 44449129578 scopus 로고    scopus 로고
    • Review: direct and indirect electrical stimulation of microbial metabolism
    • Thrash J.C., Coates J.D. Review: direct and indirect electrical stimulation of microbial metabolism. Environ. Sci. Technol. 2008, 42:3921-3931.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 3921-3931
    • Thrash, J.C.1    Coates, J.D.2
  • 82
    • 44749085795 scopus 로고    scopus 로고
    • Microbial fuel cells for simultaneous carbon and nitrogen removal
    • Virdis B., Rabaey K., Yuan Z., Keller J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res. 2008, 42:3013-3024.
    • (2008) Water Res. , vol.42 , pp. 3013-3024
    • Virdis, B.1    Rabaey, K.2    Yuan, Z.3    Keller, J.4
  • 83
    • 77950283289 scopus 로고    scopus 로고
    • Role of Geobacter sulfurreducens outer-surface c-type cytochromes in the reduction of soil humic acid and anthraquinone-2, 6-disulfonate
    • Voordeckers J.W., Kim B.C., Izallalen M., Lovley D.R. Role of Geobacter sulfurreducens outer-surface c-type cytochromes in the reduction of soil humic acid and anthraquinone-2, 6-disulfonate. Appl. Environ. Microbiol. 2010, 76:2371-2375.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 2371-2375
    • Voordeckers, J.W.1    Kim, B.C.2    Izallalen, M.3    Lovley, D.R.4
  • 86
    • 67650085480 scopus 로고    scopus 로고
    • Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells
    • Yi H., Nevin K.P., Kim B.C., Franks A.E., Klimes A., Tender L.M., Lovley D.R. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens. Bioelectron. 2009, 24:3498-3503.
    • (2009) Biosens. Bioelectron. , vol.24 , pp. 3498-3503
    • Yi, H.1    Nevin, K.P.2    Kim, B.C.3    Franks, A.E.4    Klimes, A.5    Tender, L.M.6    Lovley, D.R.7
  • 87
    • 70350292067 scopus 로고    scopus 로고
    • Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fiber brush as cathode material
    • You S.J., Ren N.Q., Zhao Q.L., Wang J.Y., Yang F.L. Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fiber brush as cathode material. Fuel Cells 2009, 5:588-596.
    • (2009) Fuel Cells , vol.5 , pp. 588-596
    • You, S.J.1    Ren, N.Q.2    Zhao, Q.L.3    Wang, J.Y.4    Yang, F.L.5
  • 88
    • 50249127688 scopus 로고    scopus 로고
    • Electricity generation in a microbial fuel cell with a microbially catalyzed cathode
    • Zhang J., Zhao Q., Aelterman P., You S., Jiang J. Electricity generation in a microbial fuel cell with a microbially catalyzed cathode. Biotechnol. Lett. 2008, 30:1771-1776.
    • (2008) Biotechnol. Lett. , vol.30 , pp. 1771-1776
    • Zhang, J.1    Zhao, Q.2    Aelterman, P.3    You, S.4    Jiang, J.5
  • 89
    • 34248229805 scopus 로고    scopus 로고
    • Tubular membrane cathodes for scalable power generation in microbial fuel cells
    • Zuo Y., Cheng S., Call D., Logan B.E. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environ. Sci. Technol. 2007, 41:3347-3353.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 3347-3353
    • Zuo, Y.1    Cheng, S.2    Call, D.3    Logan, B.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.