-
1
-
-
0003425384
-
APHA, Standard Methods for the Examination of Water and Wastewater
-
20th ed., American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, DC.
-
APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, DC.
-
(1998)
-
-
-
2
-
-
70349108272
-
A new method for water desalination using microbial desalination cells
-
Cao X.X., Huang X., Liang P., Xiao K., Zhou Y.J., Zhang X.Y., Logan B.E. A new method for water desalination using microbial desalination cells. Environ. Sci. Technol. 2009, 43(18):7148-7152.
-
(2009)
Environ. Sci. Technol.
, vol.43
, Issue.18
, pp. 7148-7152
-
-
Cao, X.X.1
Huang, X.2
Liang, P.3
Xiao, K.4
Zhou, Y.J.5
Zhang, X.Y.6
Logan, B.E.7
-
3
-
-
79953848195
-
Stacked microbial desalination cells to enhance water desalination efficiency
-
Chen X., Xia X., Liang P., Cao X.X., Sun H.T., Huang X. Stacked microbial desalination cells to enhance water desalination efficiency. Environ. Sci. Technol. 2011, 45(6):2465-2470.
-
(2011)
Environ. Sci. Technol.
, vol.45
, Issue.6
, pp. 2465-2470
-
-
Chen, X.1
Xia, X.2
Liang, P.3
Cao, X.X.4
Sun, H.T.5
Huang, X.6
-
4
-
-
33344465903
-
Increased performance of single-chamber microbial fuel cells using an improved cathode structure
-
Cheng S., Liu H., Logan B.E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006, 8(3):489-494.
-
(2006)
Electrochem. Commun.
, vol.8
, Issue.3
, pp. 489-494
-
-
Cheng, S.1
Liu, H.2
Logan, B.E.3
-
5
-
-
66249100237
-
Direct biological conversion of electrical current into methane by electromethanogenesis
-
Cheng S.A., Xing D.F., Call D.F., Logan B.E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 2009, 43(10):3953-3958.
-
(2009)
Environ. Sci. Technol.
, vol.43
, Issue.10
, pp. 3953-3958
-
-
Cheng, S.A.1
Xing, D.F.2
Call, D.F.3
Logan, B.E.4
-
6
-
-
77950440326
-
Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity
-
Fornero J.J., Rosenbaum M., Cotta M.A., Angenent L.T. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity. Environ. Sci. Technol. 2010, 44(7):2728-2734.
-
(2010)
Environ. Sci. Technol.
, vol.44
, Issue.7
, pp. 2728-2734
-
-
Fornero, J.J.1
Rosenbaum, M.2
Cotta, M.A.3
Angenent, L.T.4
-
7
-
-
40749123642
-
Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells
-
Freguia S., Rabaey K., Yuan Z.G., Keller J. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res. 2008, 42(6-7):1387-1396.
-
(2008)
Water Res.
, vol.42
, Issue.6-7
, pp. 1387-1396
-
-
Freguia, S.1
Rabaey, K.2
Yuan, Z.G.3
Keller, J.4
-
8
-
-
50849085152
-
Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells
-
Huang L.P., Logan B.E. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Appl. Microbiol. Biotechnol. 2008, 80(4):655-664.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.80
, Issue.4
, pp. 655-664
-
-
Huang, L.P.1
Logan, B.E.2
-
9
-
-
77957361587
-
Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode
-
Jacobson K.S., Drew D.M., He Z. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresour. Technol. 2011, 102(1):376-380.
-
(2011)
Bioresour. Technol.
, vol.102
, Issue.1
, pp. 376-380
-
-
Jacobson, K.S.1
Drew, D.M.2
He, Z.3
-
10
-
-
79959903351
-
Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination
-
Kim Y., Logan B.E. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environ. Sci. Technol. 2011, 45(13):5840-5845.
-
(2011)
Environ. Sci. Technol.
, vol.45
, Issue.13
, pp. 5840-5845
-
-
Kim, Y.1
Logan, B.E.2
-
11
-
-
33748566549
-
Microbial fuel cells: methodology and technology
-
Logan B.E., Hamelers B., Rozendal R.A., Schrorder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 2006, 40(17):5181-5192.
-
(2006)
Environ. Sci. Technol.
, vol.40
, Issue.17
, pp. 5181-5192
-
-
Logan, B.E.1
Hamelers, B.2
Rozendal, R.A.3
Schrorder, U.4
Keller, J.5
Freguia, S.6
Aelterman, P.7
Verstraete, W.8
Rabaey, K.9
-
12
-
-
0024191542
-
Novel mode of microbial energy metabolism: organism carbon oxidation coupled to dissimilatory reduction of iron or manganese
-
Lovley D.R., Phillips E.J.P. Novel mode of microbial energy metabolism: organism carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 1988, 54(6):1472-1480.
-
(1988)
Appl. Environ. Microbiol.
, vol.54
, Issue.6
, pp. 1472-1480
-
-
Lovley, D.R.1
Phillips, E.J.P.2
-
13
-
-
78650700266
-
Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells
-
Luo H.P., Jenkins P.E., Ren Z.Y. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ. Sci. Technol. 2011, 45(1):340-344.
-
(2011)
Environ. Sci. Technol.
, vol.45
, Issue.1
, pp. 340-344
-
-
Luo, H.P.1
Jenkins, P.E.2
Ren, Z.Y.3
-
14
-
-
78650259349
-
Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production
-
Mehanna M., Kiely P.D., Call D.F., Logan B.E. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environ. Sci. Technol. 2010, 44(24):9578-9583.
-
(2010)
Environ. Sci. Technol.
, vol.44
, Issue.24
, pp. 9578-9583
-
-
Mehanna, M.1
Kiely, P.D.2
Call, D.F.3
Logan, B.E.4
-
15
-
-
77957068564
-
Using microbial desalination cells to reduce water salinity prior to reverse osmosis
-
Mehanna M., Saito T., Yan J.L., Hickner M., Cao X.X., Huang X., Logan B.E. Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ. Sci. 2010, 3(8):1114-1120.
-
(2010)
Energy Environ. Sci.
, vol.3
, Issue.8
, pp. 1114-1120
-
-
Mehanna, M.1
Saito, T.2
Yan, J.L.3
Hickner, M.4
Cao, X.X.5
Huang, X.6
Logan, B.E.7
-
16
-
-
47049103719
-
Towards practical implementation of bioelectrochemical wastewater treatment
-
Rozendal R.A., Hamelers H.V.M., Rabaey K., Keller J., Buisman C.J.N. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 2008, 26(8):450-459.
-
(2008)
Trends Biotechnol.
, vol.26
, Issue.8
, pp. 450-459
-
-
Rozendal, R.A.1
Hamelers, H.V.M.2
Rabaey, K.3
Keller, J.4
Buisman, C.J.N.5
-
17
-
-
56449093708
-
Energy issues in desalination processes
-
Semiat R. Energy issues in desalination processes. Environ. Sci. Technol. 2008, 42(22):8193-8201.
-
(2008)
Environ. Sci. Technol.
, vol.42
, Issue.22
, pp. 8193-8201
-
-
Semiat, R.1
-
18
-
-
69549128558
-
Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells
-
Wang X., Cheng S.A., Feng Y.J., Merrill M.D., Saito T., Logan B.E. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol. 2009, 43(17):6870-6874.
-
(2009)
Environ. Sci. Technol.
, vol.43
, Issue.17
, pp. 6870-6874
-
-
Wang, X.1
Cheng, S.A.2
Feng, Y.J.3
Merrill, M.D.4
Saito, T.5
Logan, B.E.6
-
19
-
-
57149089226
-
Accelerated start-up of two-chambered microbial fuel cells: effect of anodic positive poised potential
-
Wang X., Feng Y.J., Ren N.Q., Wang H.M., Lee H., Li N., Zhao Q.L. Accelerated start-up of two-chambered microbial fuel cells: effect of anodic positive poised potential. Electrochim. Acta 2009, 54(3):1109-1114.
-
(2009)
Electrochim. Acta
, vol.54
, Issue.3
, pp. 1109-1114
-
-
Wang, X.1
Feng, Y.J.2
Ren, N.Q.3
Wang, H.M.4
Lee, H.5
Li, N.6
Zhao, Q.L.7
-
20
-
-
67650065362
-
Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification
-
You S.J., Ren N.Q., Zhao Q.L., Kiely P.D., Wang J.Y., Yang F.L., Fu L., Peng L. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification. Biosens. Bioelectron. 2009, 24:3698-3701.
-
(2009)
Biosens. Bioelectron.
, vol.24
, pp. 3698-3701
-
-
You, S.J.1
Ren, N.Q.2
Zhao, Q.L.3
Kiely, P.D.4
Wang, J.Y.5
Yang, F.L.6
Fu, L.7
Peng, L.8
-
21
-
-
77956131444
-
Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell
-
Zhang F., Jacobson K.S., Torres P., He Z. Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell. Energy Environ. Sci. 2010, 3(9):1347-1352.
-
(2010)
Energy Environ. Sci.
, vol.3
, Issue.9
, pp. 1347-1352
-
-
Zhang, F.1
Jacobson, K.S.2
Torres, P.3
He, Z.4
-
22
-
-
70350772359
-
Separator characteristics for increasing performance of microbial fuel cells
-
Zhang X.Y., Cheng S.A., Wang X., Huang X., Logan B.E. Separator characteristics for increasing performance of microbial fuel cells. Environ. Sci. Technol. 2009, 43(21):8456-8461.
-
(2009)
Environ. Sci. Technol.
, vol.43
, Issue.21
, pp. 8456-8461
-
-
Zhang, X.Y.1
Cheng, S.A.2
Wang, X.3
Huang, X.4
Logan, B.E.5
-
23
-
-
33748571739
-
Challenges and constraints of using oxygen cathodes in microbial fuel cells
-
Zhao F., Harnisch F., Schrorder U., Scholz F., Bogdanoff P., Herrmann I. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ. Sci. Technol. 2006, 40(17):5193-5199.
-
(2006)
Environ. Sci. Technol.
, vol.40
, Issue.17
, pp. 5193-5199
-
-
Zhao, F.1
Harnisch, F.2
Schrorder, U.3
Scholz, F.4
Bogdanoff, P.5
Herrmann, I.6
|