메뉴 건너뛰기




Volumn 6, Issue 8, 2014, Pages 6897-6928

Decision fusion based on hyperspectral and multispectral satellite imagery for accurate forest species mapping

Author keywords

Decision fusion; Forest species mapping; Fuzzy output SVM; High spatial resolution; Post regularization; Satellite hyperspectral imagery

Indexed keywords

DATA FUSION; FORESTRY; MAPPING; REMOTE SENSING; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 84905276964     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs6086897     Document Type: Article
Times cited : (36)

References (76)
  • 1
    • 33745726726 scopus 로고    scopus 로고
    • Forest type classification using data fusion of multispectral and panchromatic high-resolution satellite imageries.
    • IGARSS '05, Seoul, Korea, 25-29 July
    • Kosaka, N.; Akiyama, T.; Tsai, B.; Kojima, T. Forest type classification using data fusion of multispectral and panchromatic high-resolution satellite imageries. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS '05, Seoul, Korea, 25-29 July 2005; Volume 4, pp. 2980-2983.
    • (2005) Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium , vol.4 , pp. 2980-2983
    • Kosaka, N.1    Akiyama, T.2    Tsai, B.3    Kojima, T.4
  • 2
    • 2942752404 scopus 로고    scopus 로고
    • Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama.
    • Wang, L.; Sousa, W.P.; Gong, P.; Biging, G.S. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sens. Environ. 2004, 91, 432-440.
    • (2004) Remote Sens Environ. , vol.91 , pp. 432-440
    • Wang, L.1    Sousa, W.P.2    Gong, P.3    Biging, G.S.4
  • 4
    • 47249127189 scopus 로고    scopus 로고
    • A comparison of satellite hyperspectral and multispectral remote sensing imagery for improved classification and mapping of vegetation
    • Govender, M.; Chetty, K.; Naiken, V.; Bulcock, H. A comparison of satellite hyperspectral and multispectral remote sensing imagery for improved classification and mapping of vegetation. Water SA 2008, 34, 147-154.
    • (2008) Water SA , vol.34 , pp. 147-154
    • Govender, M.1    Chetty, K.2    Naiken, V.3    Bulcock, H.4
  • 6
    • 53349084895 scopus 로고    scopus 로고
    • Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas.
    • Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1416-1427.
    • (2008) IEEE Trans Geosci. Remote Sens. , vol.46 , pp. 1416-1427
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 7
    • 21444447781 scopus 로고    scopus 로고
    • Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales
    • Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375-398.
    • (2005) Remote Sens. Environ. , vol.96 , pp. 375-398
    • Clark, M.L.1    Roberts, D.A.2    Clark, D.B.3
  • 10
    • 84897027199 scopus 로고    scopus 로고
    • Fusion of hyperspectral and multispectral images: A novel framework based on generalization of pan-sharpening methods.
    • Chen, Z.; Pu, H.; Wang, B.; Jiang, G.-M. Fusion of hyperspectral and multispectral images: A novel framework based on generalization of pan-sharpening methods. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1418-1422.
    • (2014) IEEE Geosci Remote Sens. Lett. , vol.11 , pp. 1418-1422
    • Chen, Z.1    Pu, H.2    Wang, B.3    Jiang, G.-M.4
  • 11
    • 84892364431 scopus 로고    scopus 로고
    • Spatio-spectral fusion of satellite images based on dictionary-pair learning
    • Song, H.; Huang, B.; Zhang, K.; Zhang, H. Spatio-spectral fusion of satellite images based on dictionary-pair learning. Inf. Fusion 2014, 18, 148-160.
    • (2014) Inf. Fusion , vol.18 , pp. 148-160
    • Song, H.1    Huang, B.2    Zhang, K.3    Zhang, H.4
  • 12
    • 0032638011 scopus 로고    scopus 로고
    • A neural-statistical approach to multitemporal and multisource remote-sensing image classification.
    • Bruzzone, L.; Prieto, D.F.; Serpico, S.B. A neural-statistical approach to multitemporal and multisource remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1350-1359.
    • (1999) IEEE Trans Geosci. Remote Sens. , vol.37 , pp. 1350-1359
    • Bruzzone, L.1    Prieto, D.F.2    Serpico, S.B.3
  • 13
    • 3843137602 scopus 로고    scopus 로고
    • Data fusion and multisource image classification
    • Amarsaikhan, D.; Douglas, T. Data fusion and multisource image classification. Int. J. Remote Sens. 2004, 25, 3529-3539.
    • (2004) Int. J. Remote Sens. , vol.25 , pp. 3529-3539
    • Amarsaikhan, D.1    Douglas, T.2
  • 14
    • 79551673232 scopus 로고    scopus 로고
    • Information fusion of aerial images and LIDAR data in urban areas: Vector-stacking, re-classification and post-processing approaches
    • Huang, X.; Zhang, L.; Gong, W. Information fusion of aerial images and LIDAR data in urban areas: Vector-stacking, re-classification and post-processing approaches. Int. J. Remote Sens. 2011, 32, 69-84.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 69-84
    • Huang, X.1    Zhang, L.2    Gong, W.3
  • 15
    • 84859928062 scopus 로고    scopus 로고
    • Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data.
    • Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258-270.
    • (2012) Remote Sens Environ. , vol.123 , pp. 258-270
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 16
    • 84897585667 scopus 로고    scopus 로고
    • A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales.
    • Ghosh, A.; Fassnacht, F.E.; Joshi, P.K.; Koch, B. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 49-63.
    • (2014) Int. J. Appl. Earth Obs Geoinf. , vol.26 , pp. 49-63
    • Ghosh, A.1    Fassnacht, F.E.2    Joshi, P.K.3    Koch, B.4
  • 19
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles.
    • Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804-3814.
    • (2008) IEEE Trans Geosci. Remote Sens. , vol.46 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 20
    • 84863037300 scopus 로고    scopus 로고
    • A multilevel decision fusion approach for urban mapping using very high-resolution multi/hyperspectral imagery
    • Huang, X.; Zhang, L. A multilevel decision fusion approach for urban mapping using very high-resolution multi/hyperspectral imagery. Int. J. Remote Sens. 2012, 33, 3354-3372.
    • (2012) Int. J. Remote Sens. , vol.33 , pp. 3354-3372
    • Huang, X.1    Zhang, L.2
  • 21
    • 77951204124 scopus 로고    scopus 로고
    • Comparison of vector stacking, multi-SVMs fuzzy output, and multi-SVMs voting methods for multiscale VHR urban mapping.
    • Huang, X.; Zhang, L. Comparison of vector stacking, multi-SVMs fuzzy output, and multi-SVMs voting methods for multiscale VHR urban mapping. IEEE Geosci. Remote Sens. Lett. 2010, 7, 261-265.
    • (2010) IEEE Geosci Remote Sens. Lett. , vol.7 , pp. 261-265
    • Huang, X.1    Zhang, L.2
  • 22
    • 45849109197 scopus 로고    scopus 로고
    • Decision fusion of GA self-organizing neuro-fuzzy multilayered classifiers for land cover classification using textural and spectral features.
    • Mitrakis, N.E.; Topaloglou, C.A.; Alexandridis, T.K.; Theocharis, J.B.; Zalidis, G.C. Decision fusion of GA self-organizing neuro-fuzzy multilayered classifiers for land cover classification using textural and spectral features. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2137-2152.
    • (2008) IEEE Trans Geosci. Remote Sens. , vol.46 , pp. 2137-2152
    • Mitrakis, N.E.1    Topaloglou, C.A.2    Alexandridis, T.K.3    Theocharis, J.B.4    Zalidis, G.C.5
  • 23
    • 67651152616 scopus 로고    scopus 로고
    • Evaluation of morphological texture features for mangrove forest mapping and species discrimination using multispectral IKONOS imagery.
    • Huang, X.; Zhang, L.; Wang, L. Evaluation of morphological texture features for mangrove forest mapping and species discrimination using multispectral IKONOS imagery. IEEE Geosci. Remote Sens. Lett. 2009, 6, 393-397.
    • (2009) IEEE Geosci Remote Sens. Lett. , vol.6 , pp. 393-397
    • Huang, X.1    Zhang, L.2    Wang, L.3
  • 24
    • 79955521136 scopus 로고    scopus 로고
    • Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis.
    • Dalla Mura, M.; Villa, A.; Benediktsson, J.A.; Chanussot, J.; Bruzzone, L. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 2011, 8, 542-546.
    • (2011) IEEE Geosci Remote Sens. Lett. , vol.8 , pp. 542-546
    • Dalla Mura, M.1    Villa, A.2    Benediktsson, J.A.3    Chanussot, J.4    Bruzzone, L.5
  • 25
    • 0032654452 scopus 로고    scopus 로고
    • Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, majority voting, and neural networks.
    • Jimenez, L.O.; Morales-Morell, A.; Creus, A. Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, majority voting, and neural networks. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1360-1366.
    • (1999) IEEE Trans Geosci. Remote Sens. , vol.37 , pp. 1360-1366
    • Jimenez, L.O.1    Morales-Morell, A.2    Creus, A.3
  • 27
    • 53349127642 scopus 로고    scopus 로고
    • Decision fusion with confidence-based weight assignment for hyperspectral target recognition
    • Prasad, S.; Bruce, L.M. Decision fusion with confidence-based weight assignment for hyperspectral target recognition. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1448-1456.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 1448-1456
    • Prasad, S.1    Bruce, L.M.2
  • 29
    • 80051735881 scopus 로고    scopus 로고
    • Using class-based feature selection for the classification of hyperspectral data
    • Maghsoudi, Y.; Valadan Zoej, M.J.; Collins, M. Using class-based feature selection for the classification of hyperspectral data. Int. J. Remote Sens. 2011, 32, 4311-4326.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 4311-4326
    • Maghsoudi, Y.1    Valadan Zoej, M.J.2    Collins, M.3
  • 31
    • 34748885521 scopus 로고    scopus 로고
    • Increasing soft classification accuracy through the use of an ensemble of classifiers
    • Doan, H.T.X.; Foody, G.M. Increasing soft classification accuracy through the use of an ensemble of classifiers. Int. J. Remote Sens. 2007, 28, 4609-4623.
    • (2007) Int. J. Remote Sens. , vol.28 , pp. 4609-4623
    • Doan, H.T.X.1    Foody, G.M.2
  • 32
  • 36
    • 0032635034 scopus 로고    scopus 로고
    • Classification of multisource and hyperspectral data based on decision fusion.
    • Benediktsson, J.A.; Kanellopoulos, I. Classification of multisource and hyperspectral data based on decision fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1367-1377.
    • (1999) IEEE Trans Geosci. Remote Sens. , vol.37 , pp. 1367-1377
    • Benediktsson, J.A.1    Kanellopoulos, I.2
  • 37
    • 36349007145 scopus 로고    scopus 로고
    • Fusion of support vector machines for classification of multisensor data
    • Waske, B.; Benediktsson, J.A. Fusion of support vector machines for classification of multisensor data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3858-3866.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 3858-3866
    • Waske, B.1    Benediktsson, J.A.2
  • 38
    • 45849101525 scopus 로고    scopus 로고
    • Classifying multilevel imagery from sar and optical sensors by decision fusion.
    • Waske, B.; van der Linden, S. Classifying multilevel imagery from sar and optical sensors by decision fusion. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1457-1466.
    • (2008) IEEE Trans Geosci. Remote Sens. , vol.46 , pp. 1457-1466
    • Waske, B.1    van der Linden, S.2
  • 39
    • 0036896357 scopus 로고    scopus 로고
    • Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images
    • Bruzzone, L.; Cossu, R.; Vernazza, G. Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images. Inf. Fusion 2002, 3, 289-297.
    • (2002) Inf. Fusion , vol.3 , pp. 289-297
    • Bruzzone, L.1    Cossu, R.2    Vernazza, G.3
  • 40
    • 4544379476 scopus 로고    scopus 로고
    • Detection of land-cover transitions by combining multidate classifiers
    • Bruzzone, L.; Cossu, R.; Vernazza, G. Detection of land-cover transitions by combining multidate classifiers. Pattern Recognit. Lett. 2004, 25, 1491-1500.
    • (2004) Pattern Recognit. Lett. , vol.25 , pp. 1491-1500
    • Bruzzone, L.1    Cossu, R.2    Vernazza, G.3
  • 45
    • 84905283484 scopus 로고    scopus 로고
    • Statistical Learning Theory; Wiley: New York, NY, USA
    • Vapnik, V.N. Statistical Learning Theory; Wiley: New York, NY, USA, 1998.
    • (1998)
    • Vapnik, V.N.1
  • 47
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778-1790.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 48
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351-1362.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 49
    • 70349172947 scopus 로고    scopus 로고
    • The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas.
    • Dalponte, M.; Bruzzone, L.; Vescovo, L.; Gianelle, D. The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. Remote Sens. Environ. 2009, 113, 2345-2355.
    • (2009) Remote Sens Environ. , vol.113 , pp. 2345-2355
    • Dalponte, M.1    Bruzzone, L.2    Vescovo, L.3    Gianelle, D.4
  • 50
    • 84896862174 scopus 로고    scopus 로고
    • A comparative analysis of EO-1 Hyperion, Quickbird and Landsat TM imagery for fuel type mapping of a typical Mediterranean landscape
    • Mallinis, G.; Galidaki, G.; Gitas, I. A comparative analysis of EO-1 Hyperion, Quickbird and Landsat TM imagery for fuel type mapping of a typical Mediterranean landscape. Remote Sens. 2014, 6, 1684-1704.
    • (2014) Remote Sens. , vol.6 , pp. 1684-1704
    • Mallinis, G.1    Galidaki, G.2    Gitas, I.3
  • 51
    • 39749162214 scopus 로고    scopus 로고
    • Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site
    • Mallinis, G.; Koutsias, N.; Tsakiri-Strati, M.; Karteris, M. Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS J. Photogramm. Remote Sens. 2008, 63, 237-250.
    • (2008) ISPRS J. Photogramm. Remote Sens. , vol.63 , pp. 237-250
    • Mallinis, G.1    Koutsias, N.2    Tsakiri-Strati, M.3    Karteris, M.4
  • 54
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 55
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121-167.
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 56
    • 0034863318 scopus 로고    scopus 로고
    • Fuzzy support vector machines for pattern classification.
    • 2001, IJCNN '01, Washington, DC, USA, 15-19 July
    • Inoue, T.; Abe, S. Fuzzy support vector machines for pattern classification. In Proceedings of the International Joint Conference on Neural Networks, 2001, IJCNN '01, Washington, DC, USA, 15-19 July 2001; Volume 2, pp. 1449-1454.
    • (2001) Proceedings of the International Joint Conference on Neural Networks , vol.2 , pp. 1449-1454
    • Inoue, T.1    Abe, S.2
  • 57
    • 39049091988 scopus 로고    scopus 로고
    • A fuzzy-input fuzzy-output SVM technique for classification of hyperspectral remote sensing images.
    • 2006, NORSIG 2006, Reykjavik, Iceland, 7-9 June
    • Borasca, B.; Bruzzone, L.; Carlin, L.; Zusi, M. A fuzzy-input fuzzy-output SVM technique for classification of hyperspectral remote sensing images. In Proceedings of the 7th Nordic Signal Processing Symposium, 2006, NORSIG 2006, Reykjavik, Iceland, 7-9 June 2006; pp. 2-5.
    • (2006) Proceedings of the 7th Nordic Signal Processing Symposium , pp. 2-5
    • Borasca, B.1    Bruzzone, L.2    Carlin, L.3    Zusi, M.4
  • 58
    • 26844533480 scopus 로고    scopus 로고
    • Fuzzy output support vector machines for classification.
    • Wang, L., Chen, K., Ong, Y.S., Eds.; Springer: Berlin/Heidelberg, Germany
    • Xie, Z.; Hu, Q.; Yu, D. Fuzzy output support vector machines for classification. In Advances in Natural Computation; Wang, L., Chen, K., Ong, Y.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1190-1197.
    • (2005) Advances in Natural Computation , pp. 1190-1197
    • Xie, Z.1    Hu, Q.2    Yu, D.3
  • 59
    • 38049120940 scopus 로고    scopus 로고
    • Fuzzy-input fuzzy-output one-against-all support vector machines.
    • Apolloni, B., Howlett, R.J., Jain, L., Eds.; Springer: Berlin/Heidelberg, Germany
    • Thiel, C.; Scherer, S.; Schwenker, F. Fuzzy-input fuzzy-output one-against-all support vector machines. In Knowledge-Based Intelligent Information and Engineering Systems; Apolloni, B., Howlett, R.J., Jain, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 156-165.
    • (2007) Knowledge-Based Intelligent Information and Engineering Systems , pp. 156-165
    • Thiel, C.1    Scherer, S.2    Schwenker, F.3
  • 61
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods.
    • Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D., Eds.; MIT Press: Cambridge, MA, USA
    • Platt, J.C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers; Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D., Eds.; MIT Press: Cambridge, MA, USA, 1999; pp. 61-74.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 62
    • 34548160247 scopus 로고    scopus 로고
    • A note on Platt's probabilistic outputs for support vector machines
    • Lin, H.-T.; Lin, C.-J.; Weng, R.C. A note on Platt's probabilistic outputs for support vector machines. Mach. Learn. 2007, 68, 267-276.
    • (2007) Mach. Learn. , vol.68 , pp. 267-276
    • Lin, H.-T.1    Lin, C.-J.2    Weng, R.C.3
  • 63
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion: An experimental comparison
    • Kuncheva, L.I.; Bezdek, J.C.; Duin, R.P.W. Decision templates for multiple classifier fusion: An experimental comparison. Pattern Recognit. 2001, 34, 299-314.
    • (2001) Pattern Recognit. , vol.34 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.P.W.3
  • 64
    • 84905247462 scopus 로고    scopus 로고
    • Combining Pattern Classifiers: Methods and Algorithms; John Wiley & Sons: Hoboken, NJ, USA
    • Kuncheva, L.I. Combining Pattern Classifiers: Methods and Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2004.
    • (2004)
    • Kuncheva, L.I.1
  • 65
    • 0035899791 scopus 로고    scopus 로고
    • Using measures of similarity and inclusion for multiple classifier fusion by decision templates
    • Kuncheva, L.I. Using measures of similarity and inclusion for multiple classifier fusion by decision templates. Fuzzy Sets Syst. 2001, 122, 401-407.
    • (2001) Fuzzy Sets Syst. , vol.122 , pp. 401-407
    • Kuncheva, L.I.1
  • 66
    • 0005946314 scopus 로고    scopus 로고
    • An overview of classifier fusion methods
    • Ruta, D.; Gabrys, B. An overview of classifier fusion methods. Comput. Inf. Syst. 2000, 7, 1-10.
    • (2000) Comput. Inf. Syst. , vol.7 , pp. 1-10
    • Ruta, D.1    Gabrys, B.2
  • 67
    • 33746672590 scopus 로고    scopus 로고
    • Genetic algorithms in classifier fusion
    • Gabrys, B.; Ruta, D. Genetic algorithms in classifier fusion. Appl. Soft Comput. 2006, 6, 337-347.
    • (2006) Appl. Soft Comput. , vol.6 , pp. 337-347
    • Gabrys, B.1    Ruta, D.2
  • 68
    • 84892854554 scopus 로고    scopus 로고
    • A weighted voting framework for classifiers ensembles
    • Kuncheva, L.I.; Rodríguez, J.J. A weighted voting framework for classifiers ensembles. Knowl. Inf. Syst. 2014, 38, 259-275.
    • (2014) Knowl. Inf. Syst. , vol.38 , pp. 259-275
    • Kuncheva, L.I.1    Rodríguez, J.J.2
  • 69
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition.
    • Xu, L.; Krzyzak, A.; Suen, C.Y. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cybern. 1992, 22, 418-435.
    • (1992) IEEE Trans Syst. Man Cybern. , vol.22 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 70
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6, 21-45.
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , pp. 21-45
    • Polikar, R.1
  • 72
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J. Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2973-2987.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 73
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185-201.
    • (2002) Remote Sens. Environ. , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 74
    • 84867865876 scopus 로고    scopus 로고
    • A fast SVM-based wrapper feature selection method driven by a fuzzy complementary criterion
    • Moustakidis, S.P.; Theocharis, J.B. A fast SVM-based wrapper feature selection method driven by a fuzzy complementary criterion. Pattern Anal. Appl. 2012, 15, 379-397.
    • (2012) Pattern Anal. Appl. , vol.15 , pp. 379-397
    • Moustakidis, S.P.1    Theocharis, J.B.2
  • 76
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines.
    • 27
    • Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27:1-27:27.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.27 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.