메뉴 건너뛰기




Volumn 38, Issue 11, 2014, Pages 1367-1390

An overview of unsolved deficiencies of direct methanol fuel cell technology: Factors and parameters affecting its widespread use

Author keywords

Electrode flow rate; Electrode kinetics; Energy conversion efficiency; Membrane thickness; Methanol crossover; Polarization

Indexed keywords

CONVERSION EFFICIENCY; ENERGY CONVERSION; FUEL CELLS; FUEL STORAGE; POLARIZATION;

EID: 84905021712     PISSN: 0363907X     EISSN: 1099114X     Source Type: Journal    
DOI: 10.1002/er.3163     Document Type: Article
Times cited : (100)

References (166)
  • 1
    • 0000128880 scopus 로고
    • On voltaic series and the combination of gases by platinum
    • Grove WR. On voltaic series and the combination of gases by platinum. Philosophical Magazine Series 3 1839; 14:127-130.
    • (1839) Philosophical Magazine Series 3 , vol.14 , pp. 127-130
    • Grove, W.R.1
  • 2
    • 0001586038 scopus 로고    scopus 로고
    • DMFCs: from fundamental aspects to technology development
    • Aricò AS, Srinivasan S, Antonucci V. DMFCs: from fundamental aspects to technology development. Fuel Cells 2001; 1:133-161.
    • (2001) Fuel Cells , vol.1 , pp. 133-161
    • Aricò, A.S.1    Srinivasan, S.2    Antonucci, V.3
  • 5
    • 80055023326 scopus 로고    scopus 로고
    • A review on methanol crossover in direct methanol fuel cells: challenges and achievements
    • Ahmed M, Dincer I. A review on methanol crossover in direct methanol fuel cells: challenges and achievements. International Journal of Energy Research 2011; 35:1213-1228.
    • (2011) International Journal of Energy Research , vol.35 , pp. 1213-1228
    • Ahmed, M.1    Dincer, I.2
  • 6
    • 84881486061 scopus 로고    scopus 로고
    • Partial sulfonation of PVdF-co-HFP: a preliminary study and characterization for application in direct methanol fuel cell
    • Das S, Kumar P, Dutta K, Kundu PP. Partial sulfonation of PVdF-co-HFP: a preliminary study and characterization for application in direct methanol fuel cell. Applied Energy 2014; 113:169-177.
    • (2014) Applied Energy , vol.113 , pp. 169-177
    • Das, S.1    Kumar, P.2    Dutta, K.3    Kundu, P.P.4
  • 8
    • 84889654820 scopus 로고    scopus 로고
    • Enhanced performance of direct methanol fuel cells: a study on the combined effect of various supporting electrolytes, flow channel designs and operating temperatures
    • doi:10.1002/er.3034.
    • Kumar P, Dutta K, Kundu PP. Enhanced performance of direct methanol fuel cells: a study on the combined effect of various supporting electrolytes, flow channel designs and operating temperatures. International Journal of Energy Research 2013. doi:10.1002/er.3034.
    • (2013) International Journal of Energy Research
    • Kumar, P.1    Dutta, K.2    Kundu, P.P.3
  • 10
    • 58649123584 scopus 로고    scopus 로고
    • Current status and progress of direct borohydride fuel cell technology development
    • Liu BH, Li ZP. Current status and progress of direct borohydride fuel cell technology development. Journal of Power Sources 2009; 187:291-297.
    • (2009) Journal of Power Sources , vol.187 , pp. 291-297
    • Liu, B.H.1    Li, Z.P.2
  • 11
    • 0043283090 scopus 로고    scopus 로고
    • Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells
    • Shukla AK, Raman RK. Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells. Annual Review of Materials Research 2003; 33:155-168.
    • (2003) Annual Review of Materials Research , vol.33 , pp. 155-168
    • Shukla, A.K.1    Raman, R.K.2
  • 12
    • 0002080686 scopus 로고    scopus 로고
    • Fuel cells-a 21st century power system
    • Joon K. Fuel cells-a 21st century power system. Journal of Power Sources 1998; 71:12-18.
    • (1998) Journal of Power Sources , vol.71 , pp. 12-18
    • Joon, K.1
  • 13
    • 33744906766 scopus 로고    scopus 로고
    • Microbial fuel cells: novel microbial physiologies and engineering approaches
    • Lovley DR. Microbial fuel cells: novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology 2006; 17:327-332.
    • (2006) Current Opinion in Biotechnology , vol.17 , pp. 327-332
    • Lovley, D.R.1
  • 14
  • 18
    • 0033878418 scopus 로고    scopus 로고
    • Critical assessment of power trains with fuel-cell systems and different fuels
    • Höhlein B, von Andrian S, Grube T, Menzer R. Critical assessment of power trains with fuel-cell systems and different fuels. Journal of Power Sources 2000; 86:243-249.
    • (2000) Journal of Power Sources , vol.86 , pp. 243-249
    • Höhlein, B.1    von Andrian, S.2    Grube, T.3    Menzer, R.4
  • 20
    • 65949124716 scopus 로고    scopus 로고
    • Recent challenges of hydrogen storage technologies for fuel cell vehicles
    • Mori D, Hirose K. Recent challenges of hydrogen storage technologies for fuel cell vehicles. International Journal of Hydrogen Energy 2009; 34:4569-4574.
    • (2009) International Journal of Hydrogen Energy , vol.34 , pp. 4569-4574
    • Mori, D.1    Hirose, K.2
  • 21
    • 13644265597 scopus 로고    scopus 로고
    • The effect of methanol concentration on the performance of a passive DMFC
    • Liu JG, Zhao TS, Chen R, Wong CW. The effect of methanol concentration on the performance of a passive DMFC. Electrochemistry Communications 2005; 7:288-294.
    • (2005) Electrochemistry Communications , vol.7 , pp. 288-294
    • Liu, J.G.1    Zhao, T.S.2    Chen, R.3    Wong, C.W.4
  • 22
    • 1542304757 scopus 로고    scopus 로고
    • International activities in DMFC R&D: status of technologies and potential applications
    • Dillon R, Srinivasan S, Aricò AS, Antonucci V. International activities in DMFC R&D: status of technologies and potential applications. Journal of Power Sources 2004; 127:112-126.
    • (2004) Journal of Power Sources , vol.127 , pp. 112-126
    • Dillon, R.1    Srinivasan, S.2    Aricò, A.S.3    Antonucci, V.4
  • 23
    • 0034544124 scopus 로고    scopus 로고
    • Process analysis of a liquid-feed direct methanol fuel cell system
    • Sv A, Meusinger J. Process analysis of a liquid-feed direct methanol fuel cell system. Journal of Power Sources 2000; 91:193-201.
    • (2000) Journal of Power Sources , vol.91 , pp. 193-201
    • Sv, A.1    Meusinger, J.2
  • 24
    • 2442713124 scopus 로고    scopus 로고
    • A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells
    • Yao KZ, Karan K, McAuley KB, Oosthuizen P, Peppley B, Xie T. A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells. Fuel Cells 2004; 4:3-29.
    • (2004) Fuel Cells , vol.4 , pp. 3-29
    • Yao, K.Z.1    Karan, K.2    McAuley, K.B.3    Oosthuizen, P.4    Peppley, B.5    Xie, T.6
  • 26
    • 78751530294 scopus 로고    scopus 로고
    • Preparation and characterization of membrane electrode assembly (MEA) for PEMFC
    • Firtina I, Guner S, Albostan A. Preparation and characterization of membrane electrode assembly (MEA) for PEMFC. International Journal of Energy Research 2011; 35:146-152.
    • (2011) International Journal of Energy Research , vol.35 , pp. 146-152
    • Firtina, I.1    Guner, S.2    Albostan, A.3
  • 28
    • 33845645444 scopus 로고    scopus 로고
    • Influence of annealing of membrane electrode assembly (MEA) on performance of direct methanol fuel cell (DMFC)
    • Jung H-Y, Cho K-Y, Lee YM, Park J-K, Choi J-H, Sung Y-E. Influence of annealing of membrane electrode assembly (MEA) on performance of direct methanol fuel cell (DMFC). Journal of Power Sources 2007; 163:952-956.
    • (2007) Journal of Power Sources , vol.163 , pp. 952-956
    • Jung, H.-Y.1    Cho, K.-Y.2    Lee, Y.M.3    Park, J.-K.4    Choi, J.-H.5    Sung, Y.-E.6
  • 29
    • 33847074712 scopus 로고    scopus 로고
    • Performance of direct methanol fuel cells prepared by hot-pressed MEA and catalyst-coated membrane (CCM)
    • Tang H, Wang S, Pana M, Jiang SP, Ruan Y. Performance of direct methanol fuel cells prepared by hot-pressed MEA and catalyst-coated membrane (CCM). Electrochimica Acta 2007; 52:3714-3718.
    • (2007) Electrochimica Acta , vol.52 , pp. 3714-3718
    • Tang, H.1    Wang, S.2    Pana, M.3    Jiang, S.P.4    Ruan, Y.5
  • 31
    • 33845632836 scopus 로고    scopus 로고
    • Performance of an integrated composite membrane electrode assembly in DMFC
    • Wan N, Mao Z, Wang C, Wang G. Performance of an integrated composite membrane electrode assembly in DMFC. Journal of Power Sources 2007; 163:725-730.
    • (2007) Journal of Power Sources , vol.163 , pp. 725-730
    • Wan, N.1    Mao, Z.2    Wang, C.3    Wang, G.4
  • 32
    • 34548256755 scopus 로고    scopus 로고
    • Formation and evaluation of semi-IPN of Nafion 117 membrane for direct methanol fuel cell 1. Crosslinked sulfonated polystyrene in the pores of nafion 117
    • Kundu PP, Kim BT, Ahn JE, Han HS, Shul YG. Formation and evaluation of semi-IPN of Nafion 117 membrane for direct methanol fuel cell 1. Crosslinked sulfonated polystyrene in the pores of nafion 117. Journal of Power Sources 2007; 171:86-91.
    • (2007) Journal of Power Sources , vol.171 , pp. 86-91
    • Kundu, P.P.1    Kim, B.T.2    Ahn, J.E.3    Han, H.S.4    Shul, Y.G.5
  • 34
    • 0035947890 scopus 로고    scopus 로고
    • Carbon monoxide poisoning of proton exchange membrane fuel cells
    • Baschuk JJ, Li X. Carbon monoxide poisoning of proton exchange membrane fuel cells. International Journal of Energy Research 2001; 25:695-713.
    • (2001) International Journal of Energy Research , vol.25 , pp. 695-713
    • Baschuk, J.J.1    Li, X.2
  • 37
    • 34247612359 scopus 로고    scopus 로고
    • The influence of anode gas diffusion layer on the performance of low temperature DMFC
    • Zhang J, Yin GP, Lai QZ, Wang ZB, Cai KD, Liu P. The influence of anode gas diffusion layer on the performance of low temperature DMFC. Journal of Power Sources 2007; 168:453-8.
    • (2007) Journal of Power Sources , vol.168 , pp. 453-458
    • Zhang, J.1    Yin, G.P.2    Lai, Q.Z.3    Wang, Z.B.4    Cai, K.D.5    Liu, P.6
  • 38
    • 42749091416 scopus 로고    scopus 로고
    • Preparation of water management layer and effects of its composition on performance of PEMFCs
    • Jian-hua T, Zhao-yuan S, Jin-song S, Zhong-qiang S. Preparation of water management layer and effects of its composition on performance of PEMFCs. Energy Conversion and Management 2008; 49:1500-1505.
    • (2008) Energy Conversion and Management , vol.49 , pp. 1500-1505
    • Jian-hua, T.1    Zhao-yuan, S.2    Jin-song, S.3    Zhong-qiang, S.4
  • 39
    • 38649123344 scopus 로고    scopus 로고
    • Effects of microporous layer preparation on the performance of a direct methanol fuel cell
    • Lin C, Wang T, Ye F, Fang Y, Wang X. Effects of microporous layer preparation on the performance of a direct methanol fuel cell. Electrochemistry Communications 2008; 10:255-258.
    • (2008) Electrochemistry Communications , vol.10 , pp. 255-258
    • Lin, C.1    Wang, T.2    Ye, F.3    Fang, Y.4    Wang, X.5
  • 40
    • 70349263268 scopus 로고    scopus 로고
    • Effect of the porous carbon layer in the cathode gas diffusion media on direct methanol fuel cell performances
    • Park J-Y, Kim H-T, Lee ES, Son I-H, Han S. Effect of the porous carbon layer in the cathode gas diffusion media on direct methanol fuel cell performances. International Journal of Hydrogen Energy 2009; 34:8257-8262.
    • (2009) International Journal of Hydrogen Energy , vol.34 , pp. 8257-8262
    • Park, J.-Y.1    Kim, H.-T.2    Lee, E.S.3    Son, I.-H.4    Han, S.5
  • 41
    • 77958454186 scopus 로고    scopus 로고
    • Differences in structure and property of carbon paper and carbon cloth diffusion media and their impact on proton exchange membrane fuel cell flow field design
    • Radhakrishnan V, Haridoss P. Differences in structure and property of carbon paper and carbon cloth diffusion media and their impact on proton exchange membrane fuel cell flow field design. Materials and Design 2011; 32:861-868.
    • (2011) Materials and Design , vol.32 , pp. 861-868
    • Radhakrishnan, V.1    Haridoss, P.2
  • 43
    • 77950296432 scopus 로고    scopus 로고
    • Evaluation of a compression molded composite bipolar plate for direct methanol fuel cell
    • Chen W, Liu Y, Xin Q. Evaluation of a compression molded composite bipolar plate for direct methanol fuel cell. International Journal of Hydrogen Energy 2010; 35:3783-3788.
    • (2010) International Journal of Hydrogen Energy , vol.35 , pp. 3783-3788
    • Chen, W.1    Liu, Y.2    Xin, Q.3
  • 45
    • 79961037353 scopus 로고    scopus 로고
    • Evaluation of silver-coated stainless steel bipolar plates for fuel cell applications
    • Huang I-B. Evaluation of silver-coated stainless steel bipolar plates for fuel cell applications. Journal of Power Sources 2011; 196:7649-7653.
    • (2011) Journal of Power Sources , vol.196 , pp. 7649-7653
    • Huang, I.-B.1
  • 46
    • 84885699753 scopus 로고    scopus 로고
    • Fabrication of bipolar plates based on graphite sheet via stamping method
    • Park T, Chang I, Lee YH, Cha SW. Fabrication of bipolar plates based on graphite sheet via stamping method. ECS Transactions 2013; 50:795-804.
    • (2013) ECS Transactions , vol.50 , pp. 795-804
    • Park, T.1    Chang, I.2    Lee, Y.H.3    Cha, S.W.4
  • 47
    • 0037465492 scopus 로고    scopus 로고
    • Joyce Smith Cooper. Review and analysis of PEM fuel cell design and manufacturing
    • Mehta V. Joyce Smith Cooper. Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources 2003; 114:32-53.
    • (2003) Journal of Power Sources , vol.114 , pp. 32-53
    • Mehta, V.1
  • 48
    • 84889645392 scopus 로고    scopus 로고
    • Performance and material selection of nanocomposites bipolar plate in proton exchange membrane fuel cells
    • doi:10.1002/er.3109.
    • Taherian R, Nasr M. Performance and material selection of nanocomposites bipolar plate in proton exchange membrane fuel cells. Int. J. Energy Res. 2013. doi:10.1002/er.3109.
    • (2013) Int. J. Energy Res.
    • Taherian, R.1    Nasr, M.2
  • 49
    • 68849106257 scopus 로고    scopus 로고
    • Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices
    • Kamarudin SK, Achmad F, Daud WRW. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. International Journal of Hydrogen Energy 2009; 34:6902-6916.
    • (2009) International Journal of Hydrogen Energy , vol.34 , pp. 6902-6916
    • Kamarudin, S.K.1    Achmad, F.2    Daud, W.R.W.3
  • 50
    • 33746286006 scopus 로고    scopus 로고
    • Effect of anode backing layer on the cell performance of a direct methanol fuel cell
    • Xu C, Zhao TS, Ye Q. Effect of anode backing layer on the cell performance of a direct methanol fuel cell. Electrochimica Acta 2006; 51:5524-5531.
    • (2006) Electrochimica Acta , vol.51 , pp. 5524-5531
    • Xu, C.1    Zhao, T.S.2    Ye, Q.3
  • 51
    • 84905058667 scopus 로고
    • Silicon rubber gasket and material. US Patent# 4,580,794
    • Gibbons RM. Silicon rubber gasket and material. US Patent# 4, 580, 794, 1986.
    • (1986)
    • Gibbons, R.M.1
  • 52
    • 67649352918 scopus 로고    scopus 로고
    • Effect of anode current collector on the performance of passive direct methanol fuel cells
    • Lai Q-Z, Yin G-P, Wang Z-B. Effect of anode current collector on the performance of passive direct methanol fuel cells. International Journal of Energy Research 2009; 33:719-727.
    • (2009) International Journal of Energy Research , vol.33 , pp. 719-727
    • Lai, Q.-Z.1    Yin, G.-P.2    Wang, Z.-B.3
  • 54
    • 0942278018 scopus 로고    scopus 로고
    • Nano-structured Pt-Fe/C as cathode catalyst in direct methanol fuel cell
    • Li W, Zhou W, Li H, Zhou Z, Zhou B, Sun G, Xin Q. Nano-structured Pt-Fe/C as cathode catalyst in direct methanol fuel cell. Electrochimica Acta 2004; 49:1045-1055.
    • (2004) Electrochimica Acta , vol.49 , pp. 1045-1055
    • Li, W.1    Zhou, W.2    Li, H.3    Zhou, Z.4    Zhou, B.5    Sun, G.6    Xin, Q.7
  • 55
    • 77951082169 scopus 로고    scopus 로고
    • Recent development of active nanoparticle catalysts for fuel cell reactions
    • Mazumder V, Lee Y, Sun S. Recent development of active nanoparticle catalysts for fuel cell reactions. Advanced Functional Materials 2010; 20:1224-1231.
    • (2010) Advanced Functional Materials , vol.20 , pp. 1224-1231
    • Mazumder, V.1    Lee, Y.2    Sun, S.3
  • 56
    • 34547171296 scopus 로고    scopus 로고
    • Mixed potential in a direct methanol fuel cell: modeling and experiments
    • Liu F, Wang C-Y. Mixed potential in a direct methanol fuel cell: modeling and experiments. Journal of the Electrochemical Society 2007; 154:B514-B522.
    • (2007) Journal of the Electrochemical Society , vol.154
    • Liu, F.1    Wang, C.-Y.2
  • 57
    • 0037925593 scopus 로고    scopus 로고
    • Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells
    • Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. The Journal of Physical Chemistry B 2003; 107:6292-6299.
    • (2003) The Journal of Physical Chemistry B , vol.107 , pp. 6292-6299
    • Li, W.1    Liang, C.2    Zhou, W.3    Qiu, J.4    Zhou, Z.5    Sun, G.6    Xin, Q.7
  • 58
    • 33947599903 scopus 로고    scopus 로고
    • Fabrication and evaluation of Pt-Fe alloys as methanol tolerant cathode materials for direct methanol fuel cells
    • Yuan W, Scott K, Cheng H. Fabrication and evaluation of Pt-Fe alloys as methanol tolerant cathode materials for direct methanol fuel cells. Journal of Power Sources 2006; 163:323-329.
    • (2006) Journal of Power Sources , vol.163 , pp. 323-329
    • Yuan, W.1    Scott, K.2    Cheng, H.3
  • 60
    • 79551552721 scopus 로고    scopus 로고
    • Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline medium
    • Zhao Y, Zhan L, Tian J, Nie S, Ning Z. Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline medium. Electrochimica Acta 2011; 56:1967-1972.
    • (2011) Electrochimica Acta , vol.56 , pp. 1967-1972
    • Zhao, Y.1    Zhan, L.2    Tian, J.3    Nie, S.4    Ning, Z.5
  • 61
    • 74149086667 scopus 로고    scopus 로고
    • Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation
    • Li Y, Gao W, Ci L, Wang C, Ajayan PM. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 2010; 48:1124-1130.
    • (2010) Carbon , vol.48 , pp. 1124-1130
    • Li, Y.1    Gao, W.2    Ci, L.3    Wang, C.4    Ajayan, P.M.5
  • 62
    • 84867608297 scopus 로고    scopus 로고
    • High-performance Pd at PtRu/C catalyst for the anodic oxidation of methanol prepared by decorating Pd/C with a PtRu shell
    • Wu Y-N, Liao S-J, Guo H-F, Hao X-Y. High-performance Pd at PtRu/C catalyst for the anodic oxidation of methanol prepared by decorating Pd/C with a PtRu shell. Journal of Power Sources 2013; 224:66-71.
    • (2013) Journal of Power Sources , vol.224 , pp. 66-71
    • Wu, Y.-N.1    Liao, S.-J.2    Guo, H.-F.3    Hao, X.-Y.4
  • 63
    • 34848842789 scopus 로고    scopus 로고
    • Metamorphosis of the mixed phase PtRu anode catalyst for direct methanol fuel cells after exposure of methanol: in situ and ex situ characterizations
    • Chakraborty D, Chorkendorff IB, Johannessen T. Metamorphosis of the mixed phase PtRu anode catalyst for direct methanol fuel cells after exposure of methanol: in situ and ex situ characterizations. Journal of Power Sources 2007; 173:110-120.
    • (2007) Journal of Power Sources , vol.173 , pp. 110-120
    • Chakraborty, D.1    Chorkendorff, I.B.2    Johannessen, T.3
  • 64
    • 18444403463 scopus 로고    scopus 로고
    • Rate expression for electrochemical oxidation of methanol on a direct methanol fuel cell anode
    • Vidaković T, Christov M, Sundmacher K. Rate expression for electrochemical oxidation of methanol on a direct methanol fuel cell anode. Journal of Electroanalytical Chemistry 2005; 580:105-121.
    • (2005) Journal of Electroanalytical Chemistry , vol.580 , pp. 105-121
    • Vidaković, T.1    Christov, M.2    Sundmacher, K.3
  • 66
    • 13644256040 scopus 로고    scopus 로고
    • Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid
    • Lin Y, Cui X, Ye X. Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochemistry Communications 2005; 7:267-274.
    • (2005) Electrochemistry Communications , vol.7 , pp. 267-274
    • Lin, Y.1    Cui, X.2    Ye, X.3
  • 67
    • 30144444171 scopus 로고    scopus 로고
    • Advances in mixed-reactant fuel cells
    • Shukla AK, Raman RK, Scott K. Advances in mixed-reactant fuel cells. Fuel Cells 2005; 5:436-447.
    • (2005) Fuel Cells , vol.5 , pp. 436-447
    • Shukla, A.K.1    Raman, R.K.2    Scott, K.3
  • 69
    • 0344950557 scopus 로고    scopus 로고
    • Synthesis and characterization of Os and Pt-Os/carbon nanocomposites and their relative performance as methanol electrooxidation catalysts
    • Moore JT, Chu D, Jiang R, Deluga GA, Lukehart CM. Synthesis and characterization of Os and Pt-Os/carbon nanocomposites and their relative performance as methanol electrooxidation catalysts. Chemistry of Materials 2003; 15:1119-1124.
    • (2003) Chemistry of Materials , vol.15 , pp. 1119-1124
    • Moore, J.T.1    Chu, D.2    Jiang, R.3    Deluga, G.A.4    Lukehart, C.M.5
  • 70
    • 24944452648 scopus 로고    scopus 로고
    • Pt-Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid
    • Colmati F, Antolini E, Gonzalez ER. Pt-Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid. Electrochimica Acta 2005; 50:5496-5503.
    • (2005) Electrochimica Acta , vol.50 , pp. 5496-5503
    • Colmati, F.1    Antolini, E.2    Gonzalez, E.R.3
  • 71
    • 21844477315 scopus 로고    scopus 로고
    • Synthesis of Pt-Mo/carbon nanocomposites from single-source molecular precursors: a (1:1) PtMo/C PEMFC anode catalyst exhibiting CO tolerance
    • Kwiatkowski KC, Milne SB, Mukerjee S, Lukehart CM. Synthesis of Pt-Mo/carbon nanocomposites from single-source molecular precursors: a (1:1) PtMo/C PEMFC anode catalyst exhibiting CO tolerance. Journal of Cluster Science 2005; 16:251-272.
    • (2005) Journal of Cluster Science , vol.16 , pp. 251-272
    • Kwiatkowski, K.C.1    Milne, S.B.2    Mukerjee, S.3    Lukehart, C.M.4
  • 72
    • 0033485730 scopus 로고    scopus 로고
    • Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): application to direct methanol fuel cells
    • Kua J, Goddard WA III. Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): application to direct methanol fuel cells. Journal of the American Chemical Society 1999; 121:10928-10941.
    • (1999) Journal of the American Chemical Society , vol.121 , pp. 10928-10941
    • Kua, J.1    Goddard III, W.A.2
  • 74
    • 77957355673 scopus 로고    scopus 로고
    • Combinatorial investigation of Pt-Ru-Sn alloys as an anode electrocatalysts for direct alcohol fuel cells
    • Chu YH, Shul YG. Combinatorial investigation of Pt-Ru-Sn alloys as an anode electrocatalysts for direct alcohol fuel cells. International Journal of Hydrogen Energy 2010; 35:11261-11270.
    • (2010) International Journal of Hydrogen Energy , vol.35 , pp. 11261-11270
    • Chu, Y.H.1    Shul, Y.G.2
  • 75
    • 0037203795 scopus 로고    scopus 로고
    • Pt-Ru/carbon fiber nanocomposites: synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance
    • Steigerwalt ES, Deluga GA, Lukehart CM. Pt-Ru/carbon fiber nanocomposites: synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance. The Journal of Physical Chemistry B 2002; 106:760-766.
    • (2002) The Journal of Physical Chemistry B , vol.106 , pp. 760-766
    • Steigerwalt, E.S.1    Deluga, G.A.2    Lukehart, C.M.3
  • 77
    • 0037200205 scopus 로고    scopus 로고
    • Methanol electro-oxidation on gas diffusion electrodes prepared with Pt-Ru/C catalysts
    • Lizcano-Valbuena WH, Paganin VA, Gonzalez ER. Methanol electro-oxidation on gas diffusion electrodes prepared with Pt-Ru/C catalysts. Electrochimica Acta 2002; 47:3715-3722.
    • (2002) Electrochimica Acta , vol.47 , pp. 3715-3722
    • Lizcano-Valbuena, W.H.1    Paganin, V.A.2    Gonzalez, E.R.3
  • 78
    • 29144484568 scopus 로고    scopus 로고
    • Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells
    • Mu Y, Liang H, Hu J, Jiang L, Wan L. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. The Journal of Physical Chemistry B 2005; 109:22212-22216.
    • (2005) The Journal of Physical Chemistry B , vol.109 , pp. 22212-22216
    • Mu, Y.1    Liang, H.2    Hu, J.3    Jiang, L.4    Wan, L.5
  • 79
    • 41949113683 scopus 로고    scopus 로고
    • Effect of carbon substrate materials as a Pt-Ru catalyst support on the performance of direct methanol fuel cells
    • Yoo E, Okada T, Kizuka T, Nakamura J. Effect of carbon substrate materials as a Pt-Ru catalyst support on the performance of direct methanol fuel cells. Journal of Power Sources 2008; 180:221-226.
    • (2008) Journal of Power Sources , vol.180 , pp. 221-226
    • Yoo, E.1    Okada, T.2    Kizuka, T.3    Nakamura, J.4
  • 80
    • 82155166299 scopus 로고    scopus 로고
    • Titanium carbide-derived carbon as a novel support for platinum catalysts in direct methanol fuel cell application
    • Schlange A, dos Santos AR, Hasse B, Etzold BJM, Kunz U, Turek T. Titanium carbide-derived carbon as a novel support for platinum catalysts in direct methanol fuel cell application. Journal of Power Sources 2012; 199:22-28.
    • (2012) Journal of Power Sources , vol.199 , pp. 22-28
    • Schlange, A.1    dos Santos, A.R.2    Hasse, B.3    Etzold, B.J.M.4    Kunz, U.5    Turek, T.6
  • 81
    • 67650067657 scopus 로고    scopus 로고
    • 2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells
    • 2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells. Langmuir 2009; 25:7711-7717.
    • (2009) Langmuir , vol.25 , pp. 7711-7717
    • Zhou, C.1    Wang, H.2    Peng, F.3    Liang, J.4    Yu, H.5    Yang, J.6
  • 82
    • 84862965118 scopus 로고    scopus 로고
    • Hierarchical nanoporous PtFe alloy with multimodal size distributions and its catalytic performance toward methanol electrooxidation
    • Xu C, Li Q, Liu Y, Wang J, Geng H. Hierarchical nanoporous PtFe alloy with multimodal size distributions and its catalytic performance toward methanol electrooxidation. Langmuir 2012; 28:1886-1892.
    • (2012) Langmuir , vol.28 , pp. 1886-1892
    • Xu, C.1    Li, Q.2    Liu, Y.3    Wang, J.4    Geng, H.5
  • 83
    • 0035975461 scopus 로고    scopus 로고
    • A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst
    • Steigerwalt ES, Deluga GA, Cliffel DE, Lukehart CM. A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst. The Journal of Physical Chemistry B 2001; 105:8097-8101.
    • (2001) The Journal of Physical Chemistry B , vol.105 , pp. 8097-8101
    • Steigerwalt, E.S.1    Deluga, G.A.2    Cliffel, D.E.3    Lukehart, C.M.4
  • 85
    • 67649300467 scopus 로고    scopus 로고
    • Review of non-platinum anode catalysts for DMFC and PEMFC application
    • Serov A, Kwak C. Review of non-platinum anode catalysts for DMFC and PEMFC application. Applied Catalysis B: Environmental 2009; 90:313-320.
    • (2009) Applied Catalysis B: Environmental , vol.90 , pp. 313-320
    • Serov, A.1    Kwak, C.2
  • 87
    • 33846277532 scopus 로고    scopus 로고
    • The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC
    • Lu Y, Reddy RG. The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC. Electrochimica Acta 2007; 52:2562-2569.
    • (2007) Electrochimica Acta , vol.52 , pp. 2562-2569
    • Lu, Y.1    Reddy, R.G.2
  • 88
    • 14744289354 scopus 로고    scopus 로고
    • Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics
    • Baranton S, Coutanceau C, Roux C, Hahn F, Léger J-M. Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. Journal of Electroanalytical Chemistry 2005; 577:223-234.
    • (2005) Journal of Electroanalytical Chemistry , vol.577 , pp. 223-234
    • Baranton, S.1    Coutanceau, C.2    Roux, C.3    Hahn, F.4    Léger, J.-M.5
  • 90
    • 25444524880 scopus 로고    scopus 로고
    • The beneficial effect of the addition of tungsten carbides to Pt catalysts on the oxygen electroreduction
    • Meng H, Shen PK. The beneficial effect of the addition of tungsten carbides to Pt catalysts on the oxygen electroreduction. Chemical Communications 2005:4408-4410.
    • (2005) Chemical Communications , pp. 4408-4410
    • Meng, H.1    Shen, P.K.2
  • 91
    • 29444444549 scopus 로고    scopus 로고
    • Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction
    • Meng H, Shen PK. Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction. The Journal of Physical Chemistry B 2005; 109:22705-22709.
    • (2005) The Journal of Physical Chemistry B , vol.109 , pp. 22705-22709
    • Meng, H.1    Shen, P.K.2
  • 92
    • 17844377087 scopus 로고    scopus 로고
    • Carbon supported Pt-Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cells
    • Salgado JRC, Antolini E, Gonzalez ER. Carbon supported Pt-Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cells. Applied Catalysis B: Environmental 2005; 57:283-290.
    • (2005) Applied Catalysis B: Environmental , vol.57 , pp. 283-290
    • Salgado, J.R.C.1    Antolini, E.2    Gonzalez, E.R.3
  • 95
    • 18344393816 scopus 로고    scopus 로고
    • High methanol tolerance of carbon-supported Pt-Cr alloy nanoparticle electrocatalysts for oxygen reduction
    • Yang H, Alonso-Vante N, Lamy C, Akins DL. High methanol tolerance of carbon-supported Pt-Cr alloy nanoparticle electrocatalysts for oxygen reduction. Journal of the Electrochemical Society 2005; 152:A704-A709.
    • (2005) Journal of the Electrochemical Society , vol.152
    • Yang, H.1    Alonso-Vante, N.2    Lamy, C.3    Akins, D.L.4
  • 96
    • 34547631248 scopus 로고    scopus 로고
    • Ruthenium-based electrocatalysts for oxygen reduction reaction-a review
    • Lee J-W, Popov BN. Ruthenium-based electrocatalysts for oxygen reduction reaction-a review. Journal of Solid State Electrochemistry 2007; 11:1355-1364.
    • (2007) Journal of Solid State Electrochemistry , vol.11 , pp. 1355-1364
    • Lee, J.-W.1    Popov, B.N.2
  • 97
    • 76749152842 scopus 로고    scopus 로고
    • Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell: the effect of catalyst composition
    • Li W, Xin Q, Yan Y. Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell: the effect of catalyst composition. International Journal of Hydrogen Energy 2010; 35:2530-2538.
    • (2010) International Journal of Hydrogen Energy , vol.35 , pp. 2530-2538
    • Li, W.1    Xin, Q.2    Yan, Y.3
  • 98
    • 49649121677 scopus 로고    scopus 로고
    • MEA with double-layered catalyst cathode to mitigate methanol crossover in DMFC
    • Wang T, Lin C, Ye F, Fang Y, Li J, Wang X. MEA with double-layered catalyst cathode to mitigate methanol crossover in DMFC. Electrochemistry Communications 2008; 10:1261-1263.
    • (2008) Electrochemistry Communications , vol.10 , pp. 1261-1263
    • Wang, T.1    Lin, C.2    Ye, F.3    Fang, Y.4    Li, J.5    Wang, X.6
  • 106
    • 84856371820 scopus 로고    scopus 로고
    • Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells
    • Huang H, Chen H, Sun D, Wang X. Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells. Journal of Power Sources 2012; 204:46-52.
    • (2012) Journal of Power Sources , vol.204 , pp. 46-52
    • Huang, H.1    Chen, H.2    Sun, D.3    Wang, X.4
  • 107
    • 84857483713 scopus 로고    scopus 로고
    • Support materials for PEMFC and DMFC electrocatalysts-a review
    • Sharma S, Pollet BG. Support materials for PEMFC and DMFC electrocatalysts-a review. Journal of Power Sources 2012; 208:96-119.
    • (2012) Journal of Power Sources , vol.208 , pp. 96-119
    • Sharma, S.1    Pollet, B.G.2
  • 108
    • 79955398643 scopus 로고    scopus 로고
    • Polyaniline-functionalized carbon nanotube supported platinum catalysts
    • He D, Zeng C, Xu C, Cheng N, Li H, Mu S, Pan M. Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir 2011; 27:5582-5588.
    • (2011) Langmuir , vol.27 , pp. 5582-5588
    • He, D.1    Zeng, C.2    Xu, C.3    Cheng, N.4    Li, H.5    Mu, S.6    Pan, M.7
  • 109
    • 77957903151 scopus 로고    scopus 로고
    • In situ chemical fabrication of polyaniline/multi-walled carbon nanotubes composites as supports of Pt for methanol electrooxidation
    • Xu YT, Lin SJ, Peng XL, Luo W-A, Gal J-Y, Dai LZ. In situ chemical fabrication of polyaniline/multi-walled carbon nanotubes composites as supports of Pt for methanol electrooxidation. Science China Chemistry 2010; 53:2006-2014.
    • (2010) Science China Chemistry , vol.53 , pp. 2006-2014
    • Xu, Y.T.1    Lin, S.J.2    Peng, X.L.3    Luo, W.-A.4    Gal, J.-Y.5    Dai, L.Z.6
  • 110
    • 84879896415 scopus 로고    scopus 로고
    • Self-assembled phosphomolybdic acid-polyaniline-graphene composite-supported efficient catalyst towards methanol oxidation
    • Cui Z, Guo CX, Li CM. Self-assembled phosphomolybdic acid-polyaniline-graphene composite-supported efficient catalyst towards methanol oxidation. Journal of Materials Chemistry A 2013; 1:6687-6692.
    • (2013) Journal of Materials Chemistry A , vol.1 , pp. 6687-6692
    • Cui, Z.1    Guo, C.X.2    Li, C.M.3
  • 111
    • 84892653675 scopus 로고    scopus 로고
    • A facile preparation of Pt-Ru nanoparticles supported on polyaniline modified fullerene [60] for methanol oxidation
    • 2061(1)-2061(7)
    • Bai Z, Shi M, Niu L, Li Z, Jiang L, Yang L. A facile preparation of Pt-Ru nanoparticles supported on polyaniline modified fullerene [60] for methanol oxidation. Journal of Nanoparticle Research 2013; 15:2061(1)-2061(7).
    • (2013) Journal of Nanoparticle Research , vol.15
    • Bai, Z.1    Shi, M.2    Niu, L.3    Li, Z.4    Jiang, L.5    Yang, L.6
  • 112
    • 38749139904 scopus 로고    scopus 로고
    • Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells
    • Reddy ALM, Rajalakshmi N, Ramaprabhu S. Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells. Carbon 2008; 46:2-11.
    • (2008) Carbon , vol.46 , pp. 2-11
    • Reddy, A.L.M.1    Rajalakshmi, N.2    Ramaprabhu, S.3
  • 113
    • 80052957505 scopus 로고    scopus 로고
    • Effect of polyaniline-doped trifluoromethane sulfonic acid nanofiber composite film thickness on electrode for methanol oxidation
    • Gharibi H, Kakaei K, Zhiani M, Taghiabadi MM. Effect of polyaniline-doped trifluoromethane sulfonic acid nanofiber composite film thickness on electrode for methanol oxidation. International Journal of Hydrogen Energy 2011; 36:13301-13309.
    • (2011) International Journal of Hydrogen Energy , vol.36 , pp. 13301-13309
    • Gharibi, H.1    Kakaei, K.2    Zhiani, M.3    Taghiabadi, M.M.4
  • 114
    • 84860505072 scopus 로고    scopus 로고
    • Performing of novel nanostructure MEA based on polyaniline modified anode direct methanol fuel cell
    • Zhiani M, Gharibi H, Kakaei K. Performing of novel nanostructure MEA based on polyaniline modified anode direct methanol fuel cell. Journal of Power Sources 2012; 210:42-46.
    • (2012) Journal of Power Sources , vol.210 , pp. 42-46
    • Zhiani, M.1    Gharibi, H.2    Kakaei, K.3
  • 115
    • 33748435774 scopus 로고    scopus 로고
    • A class of non-precious metal composite catalysts for fuel cells
    • Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006; 443:63-66.
    • (2006) Nature , vol.443 , pp. 63-66
    • Bashyam, R.1    Zelenay, P.2
  • 116
    • 77956149924 scopus 로고    scopus 로고
    • High Pt utilization electrodes for polymer electrolyte membrane fuel cells by dispersing Pt particles formed by a precipitation method on carbon "polished" with polypyrrole
    • Unni SM, Dhavale VM, Pillai VK, Kurungot S. High Pt utilization electrodes for polymer electrolyte membrane fuel cells by dispersing Pt particles formed by a precipitation method on carbon "polished" with polypyrrole. The Journal of Physical Chemistry C 2010; 114:14654-14661.
    • (2010) The Journal of Physical Chemistry C , vol.114 , pp. 14654-14661
    • Unni, S.M.1    Dhavale, V.M.2    Pillai, V.K.3    Kurungot, S.4
  • 117
    • 77949653875 scopus 로고    scopus 로고
    • Fabrication of Pt nanoparticles decorated PPy-MWNTs composites and their electrocatalytic activity for methanol oxidation
    • Qu B, Xu Y-T, Lin S-J, Zheng Y-F, Dai L-Z. Fabrication of Pt nanoparticles decorated PPy-MWNTs composites and their electrocatalytic activity for methanol oxidation. Synthetic Metals 2010; 160:732-742.
    • (2010) Synthetic Metals , vol.160 , pp. 732-742
    • Qu, B.1    Xu, Y.-T.2    Lin, S.-J.3    Zheng, Y.-F.4    Dai, L.-Z.5
  • 118
    • 0037478696 scopus 로고    scopus 로고
    • A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC
    • Kim Y-M, Park K-W, Choi J-H, Park I-S, Sung Y-E. A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC. Electrochemistry Communications 2003; 5:571-574.
    • (2003) Electrochemistry Communications , vol.5 , pp. 571-574
    • Kim, Y.-M.1    Park, K.-W.2    Choi, J.-H.3    Park, I.-S.4    Sung, Y.-E.5
  • 120
  • 122
    • 77953128622 scopus 로고    scopus 로고
    • Transient and steady-state analysis of catalyst poisoning and mixed potential formation in direct methanol fuel cells
    • Gerteisen D. Transient and steady-state analysis of catalyst poisoning and mixed potential formation in direct methanol fuel cells. Journal of Power Sources 2010; 195:6719-6731.
    • (2010) Journal of Power Sources , vol.195 , pp. 6719-6731
    • Gerteisen, D.1
  • 123
    • 84904980773 scopus 로고    scopus 로고
    • Ion conducting composite membrane materials containing an optionally modified zirconium phosphate dispersed in a polymeric matrix, method for preparation of the membrane material and its use. US Patent# 7,108,935
    • Bauer B, Roziere J, Jones D, Alberti G, Casciola M, Pica M. Ion conducting composite membrane materials containing an optionally modified zirconium phosphate dispersed in a polymeric matrix, method for preparation of the membrane material and its use. US Patent# 7, 108, 935, 2006.
    • (2006)
    • Bauer, B.1    Roziere, J.2    Jones, D.3    Alberti, G.4    Casciola, M.5    Pica, M.6
  • 125
    • 2942648148 scopus 로고    scopus 로고
    • Electrochemical and flow characterization of a direct methanol fuel cell
    • Lu GQ, Wang CY. Electrochemical and flow characterization of a direct methanol fuel cell. Journal of Power Sources 2004; 134:33-40.
    • (2004) Journal of Power Sources , vol.134 , pp. 33-40
    • Lu, G.Q.1    Wang, C.Y.2
  • 127
    • 75349113479 scopus 로고    scopus 로고
    • Measurement and estimation of species distribution in a direct methanol fuel cell
    • Selahattin C, Mat MD. Measurement and estimation of species distribution in a direct methanol fuel cell. International Journal of Hydrogen Energy 2010; 35:2151-2159.
    • (2010) International Journal of Hydrogen Energy , vol.35 , pp. 2151-2159
    • Selahattin, C.1    Mat, M.D.2
  • 128
    • 0033221384 scopus 로고    scopus 로고
    • A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells
    • Heinzel A, Barragán VM. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. Journal of Power Sources 1999; 84:70-74.
    • (1999) Journal of Power Sources , vol.84 , pp. 70-74
    • Heinzel, A.1    Barragán, V.M.2
  • 129
    • 15344344088 scopus 로고    scopus 로고
    • Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells
    • Yang H, Zhao TS, Ye Q. Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells. Journal of Power Sources 2005; 142:117-124.
    • (2005) Journal of Power Sources , vol.142 , pp. 117-124
    • Yang, H.1    Zhao, T.S.2    Ye, Q.3
  • 130
    • 0033896077 scopus 로고    scopus 로고
    • Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance
    • Ren X, Springer TE, Gottesfeld S. Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance. Journal of the Electrochemical Society 2000; 147:92-98.
    • (2000) Journal of the Electrochemical Society , vol.147 , pp. 92-98
    • Ren, X.1    Springer, T.E.2    Gottesfeld, S.3
  • 131
    • 0035366756 scopus 로고    scopus 로고
    • Direct methanol-air fuel cells with membranes plus circulating electrolyte
    • Kordesch K, Hacker V, Bachhiesl U. Direct methanol-air fuel cells with membranes plus circulating electrolyte. Journal of Power Sources 2001; 96:200-203.
    • (2001) Journal of Power Sources , vol.96 , pp. 200-203
    • Kordesch, K.1    Hacker, V.2    Bachhiesl, U.3
  • 132
    • 0037079130 scopus 로고    scopus 로고
    • Methanol crossover in direct methanol fuel cells: a link between power and energy density
    • Gurau B, Smotkin ES. Methanol crossover in direct methanol fuel cells: a link between power and energy density. Journal of Power Sources 2002; 112:339-352.
    • (2002) Journal of Power Sources , vol.112 , pp. 339-352
    • Gurau, B.1    Smotkin, E.S.2
  • 133
    • 2442570113 scopus 로고    scopus 로고
    • Modeling the effects of methanol crossover on the DMFC
    • Zhang J, Wang Y. Modeling the effects of methanol crossover on the DMFC. Fuel Cells 2004; 4:90-95.
    • (2004) Fuel Cells , vol.4 , pp. 90-95
    • Zhang, J.1    Wang, Y.2
  • 134
  • 135
    • 50949083467 scopus 로고    scopus 로고
    • DMFC performance and methanol cross-over: experimental analysis and model validation
    • Casalegno A, Marchesi R. DMFC performance and methanol cross-over: experimental analysis and model validation. Journal of Power Sources 2008; 185:318-330.
    • (2008) Journal of Power Sources , vol.185 , pp. 318-330
    • Casalegno, A.1    Marchesi, R.2
  • 136
    • 0037397038 scopus 로고    scopus 로고
    • Mathematical modeling of liquid-feed direct methanol fuel cells
    • Wang ZH, Wang CY. Mathematical modeling of liquid-feed direct methanol fuel cells. Journal of the Electrochemical Society 2003; 150:A508-A519.
    • (2003) Journal of the Electrochemical Society , vol.150
    • Wang, Z.H.1    Wang, C.Y.2
  • 138
    • 33846979827 scopus 로고    scopus 로고
    • Three-dimensional simulations of liquid feed direct methanol fuel cells
    • Liu W, Wang C-Y. Three-dimensional simulations of liquid feed direct methanol fuel cells. Journal of the Electrochemical Society 2007; 154:B352-B361.
    • (2007) Journal of the Electrochemical Society , vol.154
    • Liu, W.1    Wang, C.-Y.2
  • 139
    • 33845673656 scopus 로고    scopus 로고
    • Modeling water transport in liquid feed direct methanol fuel cells
    • Liu W, Wang C-Y. Modeling water transport in liquid feed direct methanol fuel cells. Journal of Power Sources 2007; 164:189-195.
    • (2007) Journal of Power Sources , vol.164 , pp. 189-195
    • Liu, W.1    Wang, C.-Y.2
  • 140
    • 42049123097 scopus 로고    scopus 로고
    • Impedance characteristics of the direct methanol fuel cell under various operating conditions
    • Seo SH, Lee CS. Impedance characteristics of the direct methanol fuel cell under various operating conditions. Energy and Fuels 2008; 22:1204-1211.
    • (2008) Energy and Fuels , vol.22 , pp. 1204-1211
    • Seo, S.H.1    Lee, C.S.2
  • 141
    • 0001660816 scopus 로고    scopus 로고
    • Performance and modelling of a direct methanol solid polymer electrolyte fuel cell
    • Scott K, Taama W, Cruickshank J. Performance and modelling of a direct methanol solid polymer electrolyte fuel cell. Journal of Power Sources 1997; 65:159-171.
    • (1997) Journal of Power Sources , vol.65 , pp. 159-171
    • Scott, K.1    Taama, W.2    Cruickshank, J.3
  • 143
    • 0036607846 scopus 로고    scopus 로고
    • Simulation of the direct methanol fuel cell III. Design and optimization
    • Meyers JP, Newman J. Simulation of the direct methanol fuel cell III. Design and optimization. Journal of the Electrochemical Society 2002; 149:A729-A735.
    • (2002) Journal of the Electrochemical Society , vol.149
    • Meyers, J.P.1    Newman, J.2
  • 144
    • 0036607580 scopus 로고    scopus 로고
    • Simulation of the direct methanol fuel cell II. Modeling and data analysis of transport and kinetic phenomena
    • Meyers JP, Newman J. Simulation of the direct methanol fuel cell II. Modeling and data analysis of transport and kinetic phenomena. Journal of the Electrochemical Society 2002; 149:A718-A728.
    • (2002) Journal of the Electrochemical Society , vol.149
    • Meyers, J.P.1    Newman, J.2
  • 145
    • 84858287453 scopus 로고    scopus 로고
    • Development of an advanced MEA to use high-concentration methanol fuel in a direct methanol fuel cell system
    • Kang K, Lee G, Gwak G, Choi Y, Ju H. Development of an advanced MEA to use high-concentration methanol fuel in a direct methanol fuel cell system. International Journal of Hydrogen Energy 2012; 37:6285-6291.
    • (2012) International Journal of Hydrogen Energy , vol.37 , pp. 6285-6291
    • Kang, K.1    Lee, G.2    Gwak, G.3    Choi, Y.4    Ju, H.5
  • 148
    • 34548488972 scopus 로고    scopus 로고
    • Effect of cathode gas diffusion layer on water transport and cell performance in direct methanol fuel cells
    • Xu C, Zhao TS, He YL. Effect of cathode gas diffusion layer on water transport and cell performance in direct methanol fuel cells. Journal of Power Sources 2007; 171:268-274.
    • (2007) Journal of Power Sources , vol.171 , pp. 268-274
    • Xu, C.1    Zhao, T.S.2    He, Y.L.3
  • 149
    • 5644276380 scopus 로고    scopus 로고
    • Addition of non-reacting gases to the anode flow field of DMFCs leading to improved performance
    • Yang H, Zhao TS, Ye Q. Addition of non-reacting gases to the anode flow field of DMFCs leading to improved performance. Electrochemistry Communications 2004; 6:1098-1103.
    • (2004) Electrochemistry Communications , vol.6 , pp. 1098-1103
    • Yang, H.1    Zhao, T.S.2    Ye, Q.3
  • 150
    • 33750962136 scopus 로고    scopus 로고
    • Three-dimensional, two-phase, CFD model for the design of a direct methanol fuel cell
    • Danilov VA, Lim J, Moon II, Chang H. Three-dimensional, two-phase, CFD model for the design of a direct methanol fuel cell. Journal of Power Sources 2006; 162:992-1002.
    • (2006) Journal of Power Sources , vol.162 , pp. 992-1002
    • Danilov, V.A.1    Lim, J.2    Moon, I.I.3    Chang, H.4
  • 152
    • 69649104118 scopus 로고    scopus 로고
    • Modelling and analysis of a direct methanol fuel cell with under-rib mass transport and two-phase flow at the anode
    • Yang Y, Liang YC. Modelling and analysis of a direct methanol fuel cell with under-rib mass transport and two-phase flow at the anode. Journal of Power Sources 2009; 194:712-729.
    • (2009) Journal of Power Sources , vol.194 , pp. 712-729
    • Yang, Y.1    Liang, Y.C.2
  • 153
    • 33750364975 scopus 로고    scopus 로고
    • A transient, multi-phase and multi-component model of a new passive DMFC
    • Rice J, Faghri A. A transient, multi-phase and multi-component model of a new passive DMFC. International Journal of Heat and Mass Transfer 2006; 49:4804-4820.
    • (2006) International Journal of Heat and Mass Transfer , vol.49 , pp. 4804-4820
    • Rice, J.1    Faghri, A.2
  • 154
    • 18544385636 scopus 로고    scopus 로고
    • Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells
    • Yang H, Zhao TS. Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells. Electrochimica Acta 2005; 50:3243-3252.
    • (2005) Electrochimica Acta , vol.50 , pp. 3243-3252
    • Yang, H.1    Zhao, T.S.2
  • 155
    • 0032664412 scopus 로고    scopus 로고
    • Carbon dioxide evolution patterns in direct methanol fuel cells
    • Argyropoulos P, Scott K, Taama WM. Carbon dioxide evolution patterns in direct methanol fuel cells. Electrochimica Acta 1999; 44:3575-3584.
    • (1999) Electrochimica Acta , vol.44 , pp. 3575-3584
    • Argyropoulos, P.1    Scott, K.2    Taama, W.M.3
  • 156
    • 42049092621 scopus 로고    scopus 로고
    • Effect of operating parameters on the direct methanol fuel cell using air or oxygen as an oxidant gas
    • Seo SH, Lee CS. Effect of operating parameters on the direct methanol fuel cell using air or oxygen as an oxidant gas. Energy and Fuels 2008; 22:1212-1219.
    • (2008) Energy and Fuels , vol.22 , pp. 1212-1219
    • Seo, S.H.1    Lee, C.S.2
  • 157
    • 84892512305 scopus 로고    scopus 로고
    • Investigation of mass transport and cell performance on μDMFC with different anode flow fields
    • doi:10.1002/er.3013.
    • Yuan Z, Zhang Y, Li Z, Zhao Y, Liu X. Investigation of mass transport and cell performance on μDMFC with different anode flow fields. International Journal of Energy Research 2013. doi:10.1002/er.3013.
    • (2013) International Journal of Energy Research
    • Yuan, Z.1    Zhang, Y.2    Li, Z.3    Zhao, Y.4    Liu, X.5
  • 158
    • 74149092705 scopus 로고    scopus 로고
    • A novel design for a flow field configuration, of a direct methanol fuel cell
    • Hsieh S-S, Wu H-C, Her B-S. A novel design for a flow field configuration, of a direct methanol fuel cell. Journal of Power Sources 2010; 195:3224-3230.
    • (2010) Journal of Power Sources , vol.195 , pp. 3224-3230
    • Hsieh, S.-S.1    Wu, H.-C.2    Her, B.-S.3
  • 159
    • 77953130226 scopus 로고    scopus 로고
    • A study on the overall efficiency of direct methanol fuel cell by methanol crossover current
    • Seo SH, Lee CS. A study on the overall efficiency of direct methanol fuel cell by methanol crossover current. Applied Energy 2010; 87:2597-2604.
    • (2010) Applied Energy , vol.87 , pp. 2597-2604
    • Seo, S.H.1    Lee, C.S.2
  • 160
    • 10644231658 scopus 로고    scopus 로고
    • Proton electrolyte membrane properties and direct methanol fuel cell performance II. Fuel cell performance and membrane properties effects
    • Silva VS, Schirmer J, Reissner R, Ruffmann B, Silva H, Mendes A, Madeira LM, Nunes SP. Proton electrolyte membrane properties and direct methanol fuel cell performance II. Fuel cell performance and membrane properties effects. Journal of Power Sources 2005; 140:41-49.
    • (2005) Journal of Power Sources , vol.140 , pp. 41-49
    • Silva, V.S.1    Schirmer, J.2    Reissner, R.3    Ruffmann, B.4    Silva, H.5    Mendes, A.6    Madeira, L.M.7    Nunes, S.P.8
  • 162
    • 0032310425 scopus 로고    scopus 로고
    • Optimization of operating parameters of a direct methanol fuel cell and physico-chemical investigation of catalyst-electrolyte interface
    • Aricò AS, Cretì P, Antonucci PL, Cho J, Kim H, Antonucci V. Optimization of operating parameters of a direct methanol fuel cell and physico-chemical investigation of catalyst-electrolyte interface. Electrochimica Acta 1998; 43:3719-3729.
    • (1998) Electrochimica Acta , vol.43 , pp. 3719-3729
    • Aricò, A.S.1    Cretì, P.2    Antonucci, P.L.3    Cho, J.4    Kim, H.5    Antonucci, V.6
  • 163
    • 0001725160 scopus 로고    scopus 로고
    • The impact of mass transport and methanol crossover on the direct methanol fuel cell
    • Scott K, Taama WM, Argyropoulos P, Sundmacher K. The impact of mass transport and methanol crossover on the direct methanol fuel cell. Journal of Power Sources 1999; 83:204-216.
    • (1999) Journal of Power Sources , vol.83 , pp. 204-216
    • Scott, K.1    Taama, W.M.2    Argyropoulos, P.3    Sundmacher, K.4
  • 164
    • 36749014063 scopus 로고    scopus 로고
    • Basic model for membrane electrode assembly design for direct methanol fuel cells
    • Krewer U, Yoon H-K, Kim H-T. Basic model for membrane electrode assembly design for direct methanol fuel cells. Journal of Power Sources 2008; 175:760-772.
    • (2008) Journal of Power Sources , vol.175 , pp. 760-772
    • Krewer, U.1    Yoon, H.-K.2    Kim, H.-T.3
  • 165
    • 84892471879 scopus 로고    scopus 로고
    • Utilization of conducting polymers in fabricating polymer electrolyte membranes for application in direct methanol fuel cells
    • Dutta K, Kumar P, Das S, Kundu PP. Utilization of conducting polymers in fabricating polymer electrolyte membranes for application in direct methanol fuel cells. Polymer Reviews 2014; 54:1-32.
    • (2014) Polymer Reviews , vol.54 , pp. 1-32
    • Dutta, K.1    Kumar, P.2    Das, S.3    Kundu, P.P.4
  • 166
    • 84892452657 scopus 로고    scopus 로고
    • Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: A preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP
    • Dutta K, Das S, Kumar P, Kundu PP. Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: A preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP. Applied Energy 2014; 118:183-191.
    • (2014) Applied Energy , vol.118 , pp. 183-191
    • Dutta, K.1    Das, S.2    Kumar, P.3    Kundu, P.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.