-
2
-
-
34547994328
-
Discriminative learning for differing training and test distributions
-
New York, NY, USA, ACM
-
S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning for differing training and test distributions. In ICML '07: Proceedings of the 24th international conference on Machine learning, pages 81-88, New York, NY, USA, 2007. ACM.
-
(2007)
ICML '07: Proceedings of the 24th International Conference on Machine Learning
, pp. 81-88
-
-
Bickel, S.1
Brückner, M.2
Scheffer, T.3
-
3
-
-
65449118105
-
Partitioned logistic regression for spam filtering
-
New York, NY, USA. ACM
-
M.-W. Chang, W.-T. Yih, and C. Meek. Partitioned logistic regression for spam filtering. In KDD '08: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 97-105, New York, NY, USA, 2008. ACM.
-
(2008)
KDD '08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 97-105
-
-
Chang, M.-W.1
Yih, W.-T.2
Meek, C.3
-
6
-
-
56449100938
-
Learning to classify with missing and corrupted features
-
New York, NY, USA, ACM
-
O. Dekel and O. Shamir. Learning to classify with missing and corrupted features. In ICML '08: Proceedings of the 25th international conference on Machine learning, pages 216-223, New York, NY, USA, 2008. ACM.
-
(2008)
ICML '08: Proceedings of the 25th International Conference on Machine Learning
, pp. 216-223
-
-
Dekel, O.1
Shamir, O.2
-
7
-
-
56449101965
-
Confidence-weighted linear classification
-
New York, NY, USA, ACM
-
M. Dredze, K. Crammer, and F. Pereira. Confidence-weighted linear classification. In ICML '08: Proceedings of the 25th international conference on Machine learning, pages 264-271, New York, NY, USA, 2008. ACM.
-
(2008)
ICML '08: Proceedings of the 25th International Conference on Machine Learning
, pp. 264-271
-
-
Dredze, M.1
Crammer, K.2
Pereira, F.3
-
8
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
Aug.
-
R.-E. Fan, J.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res., 9:1871-1874, Aug. 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, J.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
10
-
-
33749242256
-
Nightmare at test time: Robust learning by feature deletion
-
New York, NY, USA, ACM
-
A. Globerson and S. Roweis. Nightmare at test time: robust learning by feature deletion. In ICML '06: Proceedings of the 23rd international conference on Machine learning, pages 353-360, New York, NY, USA, 2006. ACM.
-
(2006)
ICML '06: Proceedings of the 23rd International Conference on Machine Learning
, pp. 353-360
-
-
Globerson, A.1
Roweis, S.2
-
11
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
B. Schölkopf, J. Platt, and T. Hoffman, editors, MIT Press, Cambridge, MA
-
J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf. Correcting sample selection bias by unlabeled data. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 601-608. MIT Press, Cambridge, MA, 2007.
-
(2007)
Advances in Neural Information Processing Systems 19
, pp. 601-608
-
-
Huang, J.1
Smola, A.J.2
Gretton, A.3
Borgwardt, K.M.4
Schölkopf, B.5
-
12
-
-
21844461582
-
A modified finite Newton method for fast solution of large scale linear SVMs
-
S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale linear SVMs. J. Mach. Learn. Res., 6:341-361, 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 341-361
-
-
Keerthi, S.S.1
Decoste, D.2
-
13
-
-
36849020505
-
Raising the baseline for high-precision text classifiers
-
New York, NY, USA. ACM
-
A. Ko lcz and W.-T. Yih. Raising the baseline for high-precision text classifiers. In KDD '07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 400-409, New York, NY, USA, 2007. ACM.
-
(2007)
KDD '07: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 400-409
-
-
Kolcz, A.1
Yih, W.-T.2
-
14
-
-
1942484786
-
Tackling the poor assumptions of naive bayes text classifiers
-
J. D. M. Rennie, L. Shih, J. Teevan, and D. R. Karger. Tackling the poor assumptions of naive bayes text classifiers. In ICML '03: Proceedings of the 20th international conference on Machine learning, pages 616-623, 2003.
-
(2003)
ICML '03: Proceedings of the 20th International Conference on Machine Learning
, pp. 616-623
-
-
Rennie, J.D.M.1
Shih, L.2
Teevan, J.3
Karger, D.R.4
-
16
-
-
85162055491
-
Convex learning with invariances
-
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
-
C. H. Teo, A. Globerson, S. Roweis, and A. J. Smola. Convex learning with invariances. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1489-1496. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1489-1496
-
-
Teo, C.H.1
Globerson, A.2
Roweis, S.3
Smola, A.J.4
|