-
1
-
-
0004007675
-
Assessing the calibration of naive Bayes' posterior estimates
-
Technical Report CMU-CS-00-155, School of Computer Science, Carnegie Mellon University
-
P. Bennett. Assessing the calibration of naive Bayes' posterior estimates. Technical Report CMU-CS-00-155, School of Computer Science, Carnegie Mellon University, 2000.
-
(2000)
-
-
Bennett, P.1
-
2
-
-
26944476986
-
An anti-noise text categorization method based on support vector machines
-
L. Chen, J. Huang, and Z. Gong. An anti-noise text categorization method based on support vector machines. In Proceedings of AWIC 2005, pages 272-278, 20025.
-
Proceedings of AWIC 2005
-
-
Chen, L.1
Huang, J.2
Gong, Z.3
-
3
-
-
67650818887
-
The TREC 2006 spam filter evaluation track
-
G. Cormack. The TREC 2006 spam filter evaluation track. Virus Bulletin, (1), 2007.
-
(2007)
Virus Bulletin
, vol.1
-
-
Cormack, G.1
-
7
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2-3):103-130, 1997.
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
8
-
-
0032594950
-
Support Vector Machines for Spam Categorization
-
H. Drucker, D. Wu, and V. Vapnik. Support Vector Machines for Spam Categorization. IEEE Transactions on Neural Networks, 10(5):1048-1054, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 1048-1054
-
-
Drucker, H.1
Wu, D.2
Vapnik, V.3
-
9
-
-
0036161242
-
Text categorization with support vector machines. how to represent texts in input space?
-
L. Edda and J. Kindermann. Text categorization with support vector machines. how to represent texts in input space? Machine Learning, 46:423-444, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 423-444
-
-
Edda, L.1
Kindermann, J.2
-
10
-
-
84867577175
-
The foundations of cost-sensitive learning
-
C. Elkan. The foundations of cost-sensitive learning. In IJCAI, pages 973-978, 2001.
-
(2001)
IJCAI
, pp. 973-978
-
-
Elkan, C.1
-
13
-
-
84972539429
-
Combining probability distributions: A critique and an annotated bibliography
-
C. Genest and J. Zidek. Combining probability distributions: A critique and an annotated bibliography. Statistical Science, 1986.
-
(1986)
Statistical Science
-
-
Genest, C.1
Zidek, J.2
-
19
-
-
85008014387
-
Some effective techniques for naive Bayes text classification
-
S. Kim, K. Han, H. Rim, and S. Myaeng. Some effective techniques for naive Bayes text classification. IEEE Transactions on Knowledge and Data Engineering, 18(11), 2006.
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.11
-
-
Kim, S.1
Han, K.2
Rim, H.3
Myaeng, S.4
-
22
-
-
0037345486
-
Sequential sampling models of human text classification
-
M. Lee and E. Corlett. Sequential sampling models of human text classification. Cognitive Science, 27(2):159-1193, 2003.
-
(2003)
Cognitive Science
, vol.27
, Issue.2
, pp. 159-1193
-
-
Lee, M.1
Corlett, E.2
-
27
-
-
0002551285
-
Feature selection for unbalanced class distribution and Naive Bayes
-
D. Mladenic and M. Grobelnik. Feature selection for unbalanced class distribution and Naive Bayes. In Proceedings of ICML 1999, 1999.
-
(1999)
Proceedings of ICML 1999
-
-
Mladenic, D.1
Grobelnik, M.2
-
30
-
-
1542634595
-
A statistical approach to the spam problem
-
G. Robinson. A statistical approach to the spam problem. Linux Journal, (107), 2003.
-
(2003)
Linux Journal
, vol.107
-
-
Robinson, G.1
-
31
-
-
9444250522
-
Text categorisation using document profiling
-
M. Sauban and B. Pfahringer. Text categorisation using document profiling. In Proceedings of PKDD 2003, pages 411-422, 2003.
-
(2003)
Proceedings of PKDD 2003
, pp. 411-422
-
-
Sauban, M.1
Pfahringer, B.2
-
32
-
-
23444439303
-
Techniques for improving the performance of naive Bayes for text classification
-
K. Schneider. Techniques for improving the performance of naive Bayes for text classification. In Proceedings of CICLing 2005, pages 682-693, 2005.
-
(2005)
Proceedings of CICLing 2005
, pp. 682-693
-
-
Schneider, K.1
|