메뉴 건너뛰기




Volumn , Issue , 2007, Pages 400-409

Raising the baseline for high-precision text classifiers

Author keywords

Email spam detection; High precision text classification; Low false positive rates; Naive bayes

Indexed keywords

BAYESIAN NETWORKS; CONSTRAINT THEORY; DATA MINING; TEXT PROCESSING;

EID: 36849020505     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1281192.1281237     Document Type: Conference Paper
Times cited : (32)

References (36)
  • 1
    • 0004007675 scopus 로고    scopus 로고
    • Assessing the calibration of naive Bayes' posterior estimates
    • Technical Report CMU-CS-00-155, School of Computer Science, Carnegie Mellon University
    • P. Bennett. Assessing the calibration of naive Bayes' posterior estimates. Technical Report CMU-CS-00-155, School of Computer Science, Carnegie Mellon University, 2000.
    • (2000)
    • Bennett, P.1
  • 2
    • 26944476986 scopus 로고    scopus 로고
    • An anti-noise text categorization method based on support vector machines
    • L. Chen, J. Huang, and Z. Gong. An anti-noise text categorization method based on support vector machines. In Proceedings of AWIC 2005, pages 272-278, 20025.
    • Proceedings of AWIC 2005
    • Chen, L.1    Huang, J.2    Gong, Z.3
  • 3
    • 67650818887 scopus 로고    scopus 로고
    • The TREC 2006 spam filter evaluation track
    • G. Cormack. The TREC 2006 spam filter evaluation track. Virus Bulletin, (1), 2007.
    • (2007) Virus Bulletin , vol.1
    • Cormack, G.1
  • 7
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2-3):103-130, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 9
    • 0036161242 scopus 로고    scopus 로고
    • Text categorization with support vector machines. how to represent texts in input space?
    • L. Edda and J. Kindermann. Text categorization with support vector machines. how to represent texts in input space? Machine Learning, 46:423-444, 2002.
    • (2002) Machine Learning , vol.46 , pp. 423-444
    • Edda, L.1    Kindermann, J.2
  • 10
    • 84867577175 scopus 로고    scopus 로고
    • The foundations of cost-sensitive learning
    • C. Elkan. The foundations of cost-sensitive learning. In IJCAI, pages 973-978, 2001.
    • (2001) IJCAI , pp. 973-978
    • Elkan, C.1
  • 13
    • 84972539429 scopus 로고
    • Combining probability distributions: A critique and an annotated bibliography
    • C. Genest and J. Zidek. Combining probability distributions: A critique and an annotated bibliography. Statistical Science, 1986.
    • (1986) Statistical Science
    • Genest, C.1    Zidek, J.2
  • 22
    • 0037345486 scopus 로고    scopus 로고
    • Sequential sampling models of human text classification
    • M. Lee and E. Corlett. Sequential sampling models of human text classification. Cognitive Science, 27(2):159-1193, 2003.
    • (2003) Cognitive Science , vol.27 , Issue.2 , pp. 159-1193
    • Lee, M.1    Corlett, E.2
  • 27
    • 0002551285 scopus 로고    scopus 로고
    • Feature selection for unbalanced class distribution and Naive Bayes
    • D. Mladenic and M. Grobelnik. Feature selection for unbalanced class distribution and Naive Bayes. In Proceedings of ICML 1999, 1999.
    • (1999) Proceedings of ICML 1999
    • Mladenic, D.1    Grobelnik, M.2
  • 30
    • 1542634595 scopus 로고    scopus 로고
    • A statistical approach to the spam problem
    • G. Robinson. A statistical approach to the spam problem. Linux Journal, (107), 2003.
    • (2003) Linux Journal , vol.107
    • Robinson, G.1
  • 31
    • 9444250522 scopus 로고    scopus 로고
    • Text categorisation using document profiling
    • M. Sauban and B. Pfahringer. Text categorisation using document profiling. In Proceedings of PKDD 2003, pages 411-422, 2003.
    • (2003) Proceedings of PKDD 2003 , pp. 411-422
    • Sauban, M.1    Pfahringer, B.2
  • 32
    • 23444439303 scopus 로고    scopus 로고
    • Techniques for improving the performance of naive Bayes for text classification
    • K. Schneider. Techniques for improving the performance of naive Bayes for text classification. In Proceedings of CICLing 2005, pages 682-693, 2005.
    • (2005) Proceedings of CICLing 2005 , pp. 682-693
    • Schneider, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.