메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Convex learning with invariances

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; INVARIANCE; LEARNING SYSTEMS; LINEAR PROGRAMMING;

EID: 85162055491     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (88)

References (16)
  • 1
    • 0002161562 scopus 로고
    • A method for learning from hints
    • S. J. Hanson, J. D. Cowan, and C. L. Giles, editors
    • Y. Abu-Mostafa. A method for learning from hints. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, NIPS 5, 1992.
    • (1992) NIPS , vol.5
    • Abu-Mostafa, Y.1
  • 2
    • 84898989574 scopus 로고    scopus 로고
    • A second order cone programming formulation for classifying missing data
    • L. K. Saul, Y. Weiss, and L. Bottou, editors
    • C. Bhattacharyya, K. S. Pannagadatta, and A. J. Smola. A second order cone programming formulation for classifying missing data. In L. K. Saul, Y. Weiss, and L. Bottou, editors, NIPS 17, 2005.
    • (2005) NIPS , vol.17
    • Bhattacharyya, C.1    Pannagadatta, K.S.2    Smola, A.J.3
  • 3
    • 0002615660 scopus 로고    scopus 로고
    • Geometry and invariance in kernel based methods
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA. MIT Press
    • C. J. C. Burges. Geometry and invariance in kernel based methods. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods-Support Vector Learning, pages 89-116, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 89-116
    • Burges, C.J.C.1
  • 5
    • 0036161034 scopus 로고    scopus 로고
    • Training invariant support vector machines
    • DOI 10.1023/A:1012454411458
    • D. DeCoste and B. Schölkopf. Training invariant support vector machines. Machine Learning, 46:161-190, 2002. (Pubitemid 34129967)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 161-190
    • Decoste, D.1    Scholkopf, B.2
  • 6
    • 0028671953 scopus 로고
    • Lie transformation groups, integral transforms, and invariant pattern recognition
    • M. Ferraro and T. M. Caelli. Lie transformation groups, integral transforms, and invariant pattern recognition. Spatial Vision, 8:33-44, 1994.
    • (1994) Spatial Vision , vol.8 , pp. 33-44
    • Ferraro, M.1    Caelli, T.M.2
  • 7
    • 33749242256 scopus 로고    scopus 로고
    • Nightmare at test time: Robust learning by feature deletion
    • A. Globerson and S. Roweis. Nightmare at test time: Robust learning by feature deletion. In ICML, 2006.
    • (2006) ICML
    • Globerson, A.1    Roweis, S.2
  • 8
    • 84898999127 scopus 로고    scopus 로고
    • Invariant pattern recognition by semidefinite programming machines
    • S. Thrun, L. Saul, and B. Schölkopf, editors
    • T. Graepel and R. Herbrich. Invariant pattern recognition by semidefinite programming machines. In S. Thrun, L. Saul, and B. Schölkopf, editors, NIPS 16, 2004.
    • (2004) NIPS , vol.16
    • Graepel, T.1    Herbrich, R.2
  • 10
    • 33749563073 scopus 로고    scopus 로고
    • Training linear SVMs in linear time
    • T. Joachims. Training linear SVMs in linear time. In KDD, 2006.
    • (2006) KDD
    • Joachims, T.1
  • 12
    • 48849117633 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In ICML, 2007.
    • (2007) ICML
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 13
    • 0003137923 scopus 로고
    • Efficient pattern recognition using a new transformation distance
    • S. J. Hanson, J. D. Cowan, and C. L. Giles, editors
    • P. Simard, Y. LeCun, and J. Denker. Efficient pattern recognition using a new transformation distance. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, NIPS 5, 1993.
    • (1993) NIPS , vol.5
    • Simard, P.1    Lecun, Y.2    Denker, J.3
  • 14
    • 84898948585 scopus 로고    scopus 로고
    • Max-margin Markov networks
    • S. Thrun, L. Saul, and B. Schölkopf, editors
    • B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In S. Thrun, L. Saul, and B. Schölkopf, editors, NIPS 16, 2004.
    • (2004) NIPS , vol.16
    • Taskar, B.1    Guestrin, C.2    Koller, D.3
  • 15
    • 56449094547 scopus 로고    scopus 로고
    • A scalable modular convex solver for regularized risk minimization
    • C.H. Teo, Q. Le, A.J. Smola, and S.V.N. Vishwanathan. A scalable modular convex solver for regularized risk minimization. In KDD, 2007.
    • (2007) KDD
    • Teo, C.H.1    Le, Q.2    Smola, A.J.3    Vishwanathan, S.V.N.4
  • 16
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res., 6:1453-1484, 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.