메뉴 건너뛰기




Volumn 14, Issue 2, 2003, Pages 337-350

Learning polynomial feedforward neural networks by genetic programming and backpropagation

Author keywords

Backpropagation; Polynomial feedforward neural networks (PFNNs); Time series prediction; Volterra models

Indexed keywords

BACKPROPAGATION; FUNCTIONS; GENETIC ALGORITHMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; POLYNOMIAL APPROXIMATION; TIME SERIES ANALYSIS;

EID: 0037361327     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2003.809405     Document Type: Article
Times cited : (74)

References (44)
  • 1
    • 0032347323 scopus 로고    scopus 로고
    • Achieving superior generalization with a high order neural network
    • A. M. Abdelbar, "Achieving superior generalization with a high order neural network," Neural Comput. Applicat., vol. 7, pp. 141-146, 1998.
    • (1998) Neural Comput. Applicat. , vol.7 , pp. 141-146
    • Abdelbar, A.M.1
  • 2
    • 0242640579 scopus 로고
    • Power spectrum estimation through autoregression model fitting
    • H. Akaike, "Power spectrum estimation through autoregression model fitting," Ann. Inst. Statist. Math., vol. 21, pp. 407-419, 1969.
    • (1969) Ann. Inst. Statist. Math. , vol.21 , pp. 407-419
    • Akaike, H.1
  • 3
    • 0034000416 scopus 로고    scopus 로고
    • A novel network for nonlinear modeling of neural systems with arbitrary point-process inputs
    • G. K. Alataris, T. W. Berger, and V. Z. Marmarelis, "A novel network for nonlinear modeling of neural systems with arbitrary point-process inputs," Neural Networks, vol. 13, no. 2, pp. 1645-1657, 2000.
    • (2000) Neural Networks , vol.13 , Issue.2 , pp. 1645-1657
    • Alataris, G.K.1    Berger, T.W.2    Marmarelis, V.Z.3
  • 4
    • 0012992044 scopus 로고
    • Quantifying generalization in linearly weighted neural networks
    • M. Anthony and S. B. Holden, "Quantifying generalization in linearly weighted neural networks," Complex Syst., vol. 18, pp. 91-114, 1994.
    • (1994) Complex Syst. , vol.18 , pp. 91-114
    • Anthony, M.1    Holden, S.B.2
  • 7
    • 0027208467 scopus 로고
    • Conventional modeling of the multi-layer perceptron using polynomial basis functions
    • Jan.
    • M. S. Chen and M. T. Manry, "Conventional modeling of the multi-layer perceptron using polynomial basis functions," IEEE Trans. Neural Networks, vol. 4, pp. 164-166, Jan. 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 164-166
    • Chen, M.S.1    Manry, M.T.2
  • 9
    • 0025636775 scopus 로고
    • The stone-weierstrass theorem and its application to neural networks
    • July
    • N. E. Cotter, "The Stone-Weierstrass theorem and its application to neural networks," IEEE Trans. Neural Networks, vol. 1, pp. 290-295, July 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 290-295
    • Cotter, N.E.1
  • 10
    • 0000221271 scopus 로고
    • Product units: A computationally powerful and biologically plausible extension to backpropagation networks
    • R. Durbin and R. Rumelhart, "Product units: A computationally powerful and biologically plausible extension to backpropagation networks," Neural Comput., vol. 1, pp. 133-142, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 133-142
    • Durbin, R.1    Rumelhart, R.2
  • 11
    • 84901397864 scopus 로고    scopus 로고
    • On the search space of genetic programming and its relation to nature's search space
    • M. Ebner, "On the search space of genetic programming and its relation to nature's search space," in Proc. Congr. Evolutionary Computation, Washington, DC, 1999, pp. 1357-1361.
    • Proc. Congr. Evolutionary Computation, Washington, DC, 1999 , pp. 1357-1361
    • Ebner, M.1
  • 12
    • 0012988434 scopus 로고    scopus 로고
    • Induction and polynomial networks
    • M. D. Fraser, Ed. Exeter, U.K.: Intellect Books
    • J. F. Elder, IV and D. E. Brown, "Induction and polynomial networks," in Network Models for Control and Processing, M. D. Fraser, Ed. Exeter, U.K.: Intellect Books, 2000, pp. 143-198.
    • (2000) Network Models for Control and Processing , pp. 143-198
    • Elder J.F. IV1    Brown, D.E.2
  • 13
    • 0000475482 scopus 로고
    • A universal nonlinear filter, predictor and simulator which optimizes itself by a learning process
    • D. Gabor, W. Wildes, and R. Woodcock, "A universal nonlinear filter, predictor and simulator which optimizes itself by a learning process," Proc. Inst. Elect. Eng., vol. 108B, pp. 422-438, 1961.
    • (1961) Proc. Inst. Elect. Eng. , vol.108 B , pp. 422-438
    • Gabor, D.1    Wildes, W.2    Woodcock, R.3
  • 15
    • 0023949422 scopus 로고
    • Statistical behavior of the GMDH algorithm
    • D. G. Green, R. E. Reichelt, and R. H. Bradbury, "Statistical behavior of the GMDH algorithm," Biometrics, vol. 44, pp. 49-69, 1988.
    • (1988) Biometrics , vol.44 , pp. 49-69
    • Green, D.G.1    Reichelt, R.E.2    Bradbury, R.H.3
  • 17
    • 0029343601 scopus 로고    scopus 로고
    • A framework for improved training of Sigma-Pi networks
    • July
    • M. Heywood and P. Noakes, "A framework for improved training of Sigma-Pi networks," IEEE Trans. Neural Networks, vol. 6, pp. 893-903, July 1996.
    • (1996) IEEE Trans. Neural Networks , vol.6 , pp. 893-903
    • Heywood, M.1    Noakes, P.2
  • 19
    • 0013023877 scopus 로고
    • Temporal data processing using genetic programming
    • L. Eshelman, Ed. San Mateo, CA: Morgan Kaufmann
    • H. Iba, H. de Garis, and T. Sato, "Temporal data processing using genetic programming," in Proc. 6th Int. Conf. on Genetic Algorithms, ICGA-95, L. Eshelman, Ed. San Mateo, CA: Morgan Kaufmann, 1995, pp. 279-286.
    • (1995) Proc. 6th Int. Conf. on Genetic Algorithms, ICGA-95 , pp. 279-286
    • Iba, H.1    De Garis, H.2    Sato, T.3
  • 20
    • 0001987690 scopus 로고    scopus 로고
    • Numerical approach to genetic programming for system identification
    • ____, "Numerical approach to genetic programming for system identification," Evol. Comput., vol. 3, no. 4, pp. 417-452, 1996.
    • (1996) Evol. Comput. , vol.3 , Issue.4 , pp. 417-452
    • Iba, H.1    De Garis, H.2    Sato, T.3
  • 21
    • 0015142058 scopus 로고
    • Polynomial theory of complex systems
    • Aug.
    • A. G. Ivakhnenko, "Polynomial theory of complex systems," IEEE Trans. Syst, Man, Cybern., vol. SMC-1, pp. 364-378, Aug. 1971.
    • (1971) IEEE Trans. Syst, Man, Cybern. , vol.SMC-1 , pp. 364-378
    • Ivakhnenko, A.G.1
  • 23
    • 0003155122 scopus 로고
    • Fitness distance correlation as a measure of problem difficulty for genetic algorithms
    • L. J. Eshelman, Ed. San Mateo, CA: Morgan Kaufmann
    • T. C. Jones and S. Forrest, "Fitness distance correlation as a measure of problem difficulty for genetic algorithms," in Proc. 6th Int. Conf. Genetic Algorithms, L. J. Eshelman, Ed. San Mateo, CA: Morgan Kaufmann, 1995, pp. 184-192.
    • (1995) Proc. 6th Int. Conf. Genetic Algorithms , pp. 184-192
    • Jones, T.C.1    Forrest, S.2
  • 24
    • 0002049072 scopus 로고
    • System identification with evolving polynomial networks
    • R. K. Belew and L. B. Booker, Eds. San Mateo, CA: Morgan Kaufmann
    • H. Kargupta and R. E. Smith, "System identification with evolving polynomial networks," in Proc. 4th Int. Conf. Genetic Algorithms, R. K. Belew and L. B. Booker, Eds. San Mateo, CA: Morgan Kaufmann, 1991, pp. 370-376.
    • (1991) Proc. 4th Int. Conf. Genetic Algorithms , pp. 370-376
    • Kargupta, H.1    Smith, R.E.2
  • 28
    • 0003645482 scopus 로고
    • Nonlinear signal processing using neural networks: Predictions and system modeling
    • Los Alamos Nat. Lab., Los Alamos, NM, Tech. Rep. LA-UR-87-2662
    • A. Lapedes and R. Farber, "Nonlinear signal processing using neural networks: predictions and system modeling," Los Alamos Nat. Lab., Los Alamos, NM, Tech. Rep. LA-UR-87-2662, 1987.
    • (1987)
    • Lapedes, A.1    Farber, R.2
  • 29
    • 0032445796 scopus 로고    scopus 로고
    • On-line identification of nonlinear systems using volterra polynomial basis function neural networks
    • G. P. Liu, V. Kadirkamanathan, and S. A. Billings, "On-line identification of nonlinear systems using volterra polynomial basis function neural networks," Neural Networks, vol. 11, no. 9, pp. 1645-1657, 1998.
    • (1998) Neural Networks , vol.11 , Issue.9 , pp. 1645-1657
    • Liu, G.P.1    Kadirkamanathan, V.2    Billings, S.A.3
  • 31
    • 0031273027 scopus 로고    scopus 로고
    • Volterra models and three-layer perceptrons
    • Nov.
    • V. Z. Marmarelis and X. Zhao, "Volterra models and three-layer perceptrons," IEEE Trans. Neural Networks, vol. 8, pp. 1421-1433, Nov. 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 1421-1433
    • Marmarelis, V.Z.1    Zhao, X.2
  • 32
    • 0035415315 scopus 로고    scopus 로고
    • Regularization approach to inductive genetic programming
    • Dec.
    • N. Nikolaev and H. Iba, "Regularization approach to inductive genetic programming," IEEE Trans. Evol. Comput., vol. 5, pp. 359-375, Dec. 2001.
    • (2001) IEEE Trans. Evol. Comput. , vol.5 , pp. 359-375
    • Nikolaev, N.1    Iba, H.2
  • 34
    • 0000915150 scopus 로고
    • Modeling and prediction using GMDH networks of adalines with nonlinear preprocessors
    • T. Pham and X. Liu, "Modeling and prediction using GMDH networks of adalines with nonlinear preprocessors," Int. J. Syst. Sci., vol. 25, no. 11, pp. 1743-1759, 1994.
    • (1994) Int. J. Syst. Sci. , vol.25 , Issue.11 , pp. 1743-1759
    • Pham, T.1    Liu, X.2
  • 36
    • 0026118624 scopus 로고
    • A tree-structured adaptive network for function approximation in high-dimensional spaces
    • Mar.
    • T. D. Sanger, "A tree-structured adaptive network for function approximation in high-dimensional spaces," IEEE Trans. Neural Networks, vol. 2, pp. 285-293, Mar. 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 285-293
    • Sanger, T.D.1
  • 38
    • 0025399568 scopus 로고
    • Self-organizing network for optimum supervised learning
    • Mar.
    • M. F. Tenorio and W.-T. Lee, "Self-organizing network for optimum supervised learning," IEEE Trans. Neural Networks, vol. 1, pp. 100-110, Mar. 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 100-110
    • Tenorio, M.F.1    Lee, W.-T.2
  • 39
    • 0028319326 scopus 로고
    • A procedure for determining the topology of multilayer feedforward neural networks
    • Z. Wang, C. Di Massimo, M. T. Tham, and A. J. Morris, "A procedure for determining the topology of multilayer feedforward neural networks," Neural Networks, vol. 7, no. 2, pp. 291-300, 1994.
    • (1994) Neural Networks , vol.7 , Issue.2 , pp. 291-300
    • Wang, Z.1    Di Massimo, C.2    Tham, M.T.3    Morris, A.J.4
  • 40
    • 0000778985 scopus 로고
    • Predicting sunspots and exchange rates with connectionist networks
    • S. Eubank and M. Casdagli, Eds. Redwood City, CA: Addison-Wesley
    • A. S. Weigend, B. A. Huberman, and D. E. Rumelhart, "Predicting sunspots and exchange rates with connectionist networks," in Nonlinear Modeling and Forecasting, S. Eubank and M. Casdagli, Eds. Redwood City, CA: Addison-Wesley, 1992, pp. 395-432.
    • (1992) Nonlinear Modeling and Forecasting , pp. 395-432
    • Weigend, A.S.1    Huberman, B.A.2    Rumelhart, D.E.3
  • 41
    • 0029767292 scopus 로고    scopus 로고
    • A logarithmic neural network architecture for unbounded nonlinear function approximation
    • J. Wesley Hines, "A logarithmic neural network architecture for unbounded nonlinear function approximation," in Proc. Int. Conf. Neural Networks, vol. 2, 1996, pp. 1245-1250.
    • (1996) Proc. Int. Conf. Neural Networks , vol.2 , pp. 1245-1250
    • Hines, J.W.1
  • 42
    • 0028733792 scopus 로고
    • Calculation of the volterra kernels of non-linear dynamic systems using an artificial neural networks
    • J. Wray and G. G. R. Green, "Calculation of the volterra kernels of non-linear dynamic systems using an artificial neural networks," Biol. Cybern., vol. 71, no. 3, pp. 187-195, 1994.
    • (1994) Biol. Cybern. , vol.71 , Issue.3 , pp. 187-195
    • Wray, J.1    Green, G.G.R.2
  • 43
    • 0029004155 scopus 로고
    • Neural networks, approximation theory, and finite precision computation
    • ____, "Neural networks, approximation theory, and finite precision computation," Neural Networks, vol. 8, no. 1, pp. 31-37, 1995.
    • (1995) Neural Networks , vol.8 , Issue.1 , pp. 31-37
    • Wray, J.1    Green, G.G.R.2
  • 44
    • 0001063749 scopus 로고    scopus 로고
    • Evolutionary induction of sparse neural trees
    • B.-T. Zhang, P. Ohm, and H. Mühlenbein, "Evolutionary induction of sparse neural trees," Evol. Comput., vol. 5, no. 2, pp. 213-236, 1997.
    • (1997) Evol. Comput. , vol.5 , Issue.2 , pp. 213-236
    • Zhang, B.-T.1    Ohm, P.2    Mühlenbein, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.