메뉴 건너뛰기




Volumn 81, Issue , 2012, Pages 1-11

A hybrid of multiobjective Evolutionary Algorithm and HMM-Fuzzy model for time series prediction

Author keywords

Fuzzy logic; Hidden Markov model; Prediction methods; Time series

Indexed keywords

DATA DRIVEN; DATA PATTERNS; FINANCIAL TIME SERIES; FUZZY MODELS; HYBRID APPROACH; LOG LIKELIHOOD; MULTI OBJECTIVE; MULTI OBJECTIVE EVOLUTIONARY ALGORITHMS; NONLINEAR TIME SERIES; PREDICTION ACCURACY; PREDICTION METHODS; TIME SERIES PREDICTION; TRADEOFF SOLUTION;

EID: 84856323880     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.09.012     Document Type: Article
Times cited : (33)

References (48)
  • 1
    • 0028385414 scopus 로고
    • Fuzzy logic, neural networks, and soft computing
    • Zadeh L.A. Fuzzy logic, neural networks, and soft computing. Commun. ACM 1994, 37(3):77-84.
    • (1994) Commun. ACM , vol.37 , Issue.3 , pp. 77-84
    • Zadeh, L.A.1
  • 2
    • 0037331913 scopus 로고    scopus 로고
    • Data-driven linguistic modeling using relational fuzzy rules
    • Gaweda A.E., Zurada J.M. Data-driven linguistic modeling using relational fuzzy rules. IEEE Trans. Fuzzy Syst. 2003, 11:121-134.
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , pp. 121-134
    • Gaweda, A.E.1    Zurada, J.M.2
  • 5
    • 0037363497 scopus 로고    scopus 로고
    • Automatic generation of fuzzy rule-based models from data by genetic algorithms
    • Angelov P.P., Buswell R.A. Automatic generation of fuzzy rule-based models from data by genetic algorithms. Inf. Sci. 2003, 17-31.
    • (2003) Inf. Sci. , pp. 17-31
    • Angelov, P.P.1    Buswell, R.A.2
  • 6
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • Wang L.X., Mendel J. Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 1992, 22:1414-1427.
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.2
  • 7
    • 84856322865 scopus 로고    scopus 로고
    • Similarity Search and Outlier Detection in Time Series
    • Similarity Search and Outlier Detection in Time Series, http://www.latest-science-articles.com/IT/Similarity-Search-and-Outlier-Detection-in-Time-Series-4480.html.
  • 8
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77:257-286.
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 9
    • 69249206721 scopus 로고    scopus 로고
    • A combination of hidden Markov model and fuzzy model for stock market forecasting
    • Hassan M.R. A combination of hidden Markov model and fuzzy model for stock market forecasting. Neurocomputing 2009, 72:3439-3446.
    • (2009) Neurocomputing , vol.72 , pp. 3439-3446
    • Hassan, M.R.1
  • 11
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • Mamdani H., Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 1975, 7:1-13.
    • (1975) Int. J. Man-Mach. Stud. , vol.7 , pp. 1-13
    • Mamdani, H.1    Assilian, S.2
  • 12
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, 1:116-132.
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 16
    • 85169676282 scopus 로고    scopus 로고
    • An efficient method for extracting fuzzy classification rules from high dimensional data
    • Chiu S.L. An efficient method for extracting fuzzy classification rules from high dimensional data. J. Adv. Comput. Intell. 1997, 1:1-7.
    • (1997) J. Adv. Comput. Intell. , vol.1 , pp. 1-7
    • Chiu, S.L.1
  • 17
    • 84856323703 scopus 로고    scopus 로고
    • Optimal Data Driven Rule Extraction Using Adaptive Fuzzy-Neural Models, PhD Dissertation, University of Louisbille
    • J. Zurada, Optimal Data Driven Rule Extraction Using Adaptive Fuzzy-Neural Models, PhD Dissertation, University of Louisbille, 2002.
    • (2002)
    • Zurada, J.1
  • 20
    • 0012280862 scopus 로고    scopus 로고
    • A new method for generating fuzzy rules from numerical data for handling classification problems
    • Chen S.M., Lee S.H. A new method for generating fuzzy rules from numerical data for handling classification problems. Appl. Artif. Intell. 2001, 645-664.
    • (2001) Appl. Artif. Intell. , pp. 645-664
    • Chen, S.M.1    Lee, S.H.2
  • 21
    • 0035426682 scopus 로고    scopus 로고
    • Thee-objective genetics-based machine learning for linguistic rule extraction
    • Ishibuchi H., Nakashima T., Murata T. Thee-objective genetics-based machine learning for linguistic rule extraction. Inf. Sci. 2001, 109-133.
    • (2001) Inf. Sci. , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 24
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • Ishibuchi H., Yamamoto T. Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets Syst. 2004, 59-88.
    • (2004) Fuzzy Sets Syst. , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 25
    • 0036435523 scopus 로고    scopus 로고
    • Data-driven generation of compact, accurate, and linguistically-sound fuzzy classifiers based on a decision tree initialization
    • Abonyi J., Roubos J.A., Szeifert F. Data-driven generation of compact, accurate, and linguistically-sound fuzzy classifiers based on a decision tree initialization. Int. J. Approximate Reasoning 2003, 1-21.
    • (2003) Int. J. Approximate Reasoning , pp. 1-21
    • Abonyi, J.1    Roubos, J.A.2    Szeifert, F.3
  • 26
    • 0036530967 scopus 로고    scopus 로고
    • Denfis: dynamic evolving neural-fuzzy inference system and its application for time series prediction
    • Kasabov N.K., Song Q. Denfis: dynamic evolving neural-fuzzy inference system and its application for time series prediction. IEEE Trans. Fuzzy Syst. 2002, 10:144-154.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 28
    • 0029406441 scopus 로고
    • Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques
    • Wang L., Langari R. Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques. IEEE Trans. Fuzzy Syst. 1995, 454-458.
    • (1995) IEEE Trans. Fuzzy Syst. , pp. 454-458
    • Wang, L.1    Langari, R.2
  • 29
    • 0036565201 scopus 로고    scopus 로고
    • Subsethood-product fuzzy neural inference system (Supfunis)
    • Paul S., Kumar S. Subsethood-product fuzzy neural inference system (Supfunis). IEEE Trans. Neural Networks 2002, 13:578-599.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 578-599
    • Paul, S.1    Kumar, S.2
  • 31
    • 0022148098 scopus 로고
    • Vector quantization in speech coding
    • Makhoul J., Roucos S., Gish H. Vector quantization in speech coding. Proc. IEEE 1985, 73(11):1551-1585.
    • (1985) Proc. IEEE , vol.73 , Issue.11 , pp. 1551-1585
    • Makhoul, J.1    Roucos, S.2    Gish, H.3
  • 35
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey M., Glass L. Oscillation and chaos in physiological control systems. Science 1977, 197:287-289.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.1    Glass, L.2
  • 36
    • 84856340267 scopus 로고
    • Time Series Analysis: Forecasting and Control, Holden-Day, San Fransisco, CA, 1970, (third edition published in 1994).
    • J.E.P. Box, G.M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Fransisco, CA, 1970, 1976 (third edition published in 1994).
    • (1976)
    • Box, J.E.P.1    Jenkins, G.M.2
  • 40
    • 0032203243 scopus 로고    scopus 로고
    • A transformed input-domain approach to fuzzy modeling
    • Kim E., Park M., Ji S., Park M. A transformed input-domain approach to fuzzy modeling. IEEE Trans. Fuzzy Syst. 1998, 546-604.
    • (1998) IEEE Trans. Fuzzy Syst. , pp. 546-604
    • Kim, E.1    Park, M.2    Ji, S.3    Park, M.4
  • 41
    • 79955903503 scopus 로고    scopus 로고
    • Examining the link between carbon dioxide emissions and the share of industry in GDP: modeling and testing for the G-7 countries
    • Onur H.F., Fatih K. Examining the link between carbon dioxide emissions and the share of industry in GDP: modeling and testing for the G-7 countries. Energy Policy 2011, 39(6):3612-3620.
    • (2011) Energy Policy , vol.39 , Issue.6 , pp. 3612-3620
    • Onur, H.F.1    Fatih, K.2
  • 42
    • 77953358593 scopus 로고    scopus 로고
    • A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models
    • Hocaoglua F.O., Ömer Nezih Gerekb, Kurban M. A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models. J. Wind Eng. Ind. Aerodyn. 2010, 98(8):472-481.
    • (2010) J. Wind Eng. Ind. Aerodyn. , vol.98 , Issue.8 , pp. 472-481
    • Hocaoglua, F.O.1    Ömer Nezih, G.2    Kurban, M.3
  • 43
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum L.E., Pitrie T., Souls G., Weiss N. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 1970, 41:164-171.
    • (1970) Ann. Math. Stat. , vol.41 , pp. 164-171
    • Baum, L.E.1    Pitrie, T.2    Souls, G.3    Weiss, N.4
  • 44
    • 0027601884 scopus 로고
    • Anfis: adaptive-network-based fuzzy inference system
    • Jang J.R. Anfis: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23:51-63.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , pp. 51-63
    • Jang, J.R.1
  • 45
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • Yao X., Lin Y. A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Networks 1997, 8:694-713.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 694-713
    • Yao, X.1    Lin, Y.2
  • 46
    • 0000185305 scopus 로고
    • Successive identification of a fuzzy model and its application to prediction of a complex system
    • Sugeno M., Tanaka M. Successive identification of a fuzzy model and its application to prediction of a complex system. Fuzzy Sets Syst. 1991, 315-334.
    • (1991) Fuzzy Sets Syst. , pp. 315-334
    • Sugeno, M.1    Tanaka, M.2
  • 47
    • 0027544110 scopus 로고
    • A fuzzy logic based approach to qualitative modeling
    • Sugeno M., Yasukawa T. A fuzzy logic based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1993, 1(1):1-7.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.1 , pp. 1-7
    • Sugeno, M.1    Yasukawa, T.2
  • 48
    • 21444441545 scopus 로고    scopus 로고
    • Selecting input variables in fuzzy models
    • Chiu S. Selecting input variables in fuzzy models. J. Intell. Fuzzy Syst. 1996, 4:243-256.
    • (1996) J. Intell. Fuzzy Syst. , vol.4 , pp. 243-256
    • Chiu, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.