메뉴 건너뛰기




Volumn 73, Issue 13-15, 2010, Pages 2540-2553

Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks

Author keywords

Chaos theory; Elman neural network; Embedding theorem; NARX neural network; Nonlinear time series prediction; Residual analysis

Indexed keywords

ELMAN NEURAL NETWORK; EMBEDDING THEOREMS; NARX NEURAL NETWORK; NONLINEAR TIME SERIES; RESIDUAL ANALYSIS;

EID: 77955311883     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.06.004     Document Type: Article
Times cited : (242)

References (68)
  • 2
    • 33750681289 scopus 로고    scopus 로고
    • Predicting chaotic time series by boosted recurrent neural networks, in: Proceedings of the International Conference on Neural Information Processing
    • M. Assaad, R. Boné, H. Cardot, Predicting chaotic time series by boosted recurrent neural networks, in: Proceedings of the International Conference on Neural Information Processing, vol. 4233, 2006, pp. 831-840.
    • (2006) , vol.4233 , pp. 831-840
    • Assaad, M.1    Boné, R.2    Cardot, H.3
  • 3
    • 67650345078 scopus 로고    scopus 로고
    • Time series prediction with the self-organizing map: a review
    • P. Springer-Verlag, Hitzler, B. Hammer (Eds.)
    • Barreto G.A. Time series prediction with the self-organizing map: a review. Perspectives on Neural-Symbolic Integration 2006, P. Springer-Verlag, Hitzler, B. Hammer (Eds.).
    • (2006) Perspectives on Neural-Symbolic Integration
    • Barreto, G.A.1
  • 4
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 1997, 110:43-50.
    • (1997) Physica D , vol.110 , pp. 43-50
    • Cao, L.1
  • 5
    • 33846913186 scopus 로고    scopus 로고
    • Chaotic analysis of the foreign exchange rates
    • Das A., Das P. Chaotic analysis of the foreign exchange rates. Applied Mathematics and Computation 2007, 185:388-396.
    • (2007) Applied Mathematics and Computation , vol.185 , pp. 388-396
    • Das, A.1    Das, P.2
  • 6
    • 0038649707 scopus 로고    scopus 로고
    • About sunspot number medium-term predictions
    • Hiraiso Solar Terrestrial Research Center, Japan, G. Heckman (Ed.)
    • Denkmayr K., Cugnon P. About sunspot number medium-term predictions. Solar-Terrestrial Prediction Workshop V 1997, 103. Hiraiso Solar Terrestrial Research Center, Japan. G. Heckman (Ed.).
    • (1997) Solar-Terrestrial Prediction Workshop V , pp. 103
    • Denkmayr, K.1    Cugnon, P.2
  • 7
    • 40649105042 scopus 로고    scopus 로고
    • The modified differential evolution and the RBF (MDE-RBF) neural network for time series prediction, in: Proceedings of the International Joint Conference on Neural Networks, Vancouver, Canada
    • H. Dhahri, A.M. Alimi, The modified differential evolution and the RBF (MDE-RBF) neural network for time series prediction, in: Proceedings of the International Joint Conference on Neural Networks, Vancouver, Canada, 2006, pp. 2938-2943.
    • (2006) , pp. 2938-2943
    • Dhahri, H.1    Alimi, A.M.2
  • 8
    • 77950894862 scopus 로고    scopus 로고
    • The use of NARX neural networks to predict chaotic time series
    • Diaconescu E. The use of NARX neural networks to predict chaotic time series. WSEAS Transactions on Computer Research 2008, 3(3):182-191.
    • (2008) WSEAS Transactions on Computer Research , vol.3 , Issue.3 , pp. 182-191
    • Diaconescu, E.1
  • 9
    • 26444565569 scopus 로고
    • Finding structure time
    • Elman J.L. Finding structure time. Cognitive Science 1990, 14:179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 10
    • 0030702721 scopus 로고    scopus 로고
    • Gauss-Newton approximation to Bayesian learning, in: Proceedings of the International Joint Conference on Neural Networks
    • D. Foresee, M. Hagan, Gauss-Newton approximation to Bayesian learning, in: Proceedings of the International Joint Conference on Neural Networks, 1997, pp. 1930-1935.
    • (1997) , pp. 1930-1935
    • Foresee, D.1    Hagan, M.2
  • 12
  • 13
    • 34547441266 scopus 로고    scopus 로고
    • Single-step prediction of chaotic time series using wavelet-networks, in: Proceedings of the Electronics, Robotics and Automotive Mechanics Conference
    • E.S. Garcia-Trevino, V. Alarcon-Aquino, Single-step prediction of chaotic time series using wavelet-networks, in: Proceedings of the Electronics, Robotics and Automotive Mechanics Conference, vol. 1, 2006, pp. 243-248.
    • (2006) , vol.1 , pp. 243-248
    • Garcia-Trevino, E.S.1    Alarcon-Aquino, V.2
  • 14
    • 33750535466 scopus 로고    scopus 로고
    • Predicting chaotic time series using neural and neurofuzzy models: a comparative study
    • Gholipour A., Araabi B.N., Lucas C. Predicting chaotic time series using neural and neurofuzzy models: a comparative study. Neural Processing Letters 2006, 24:217-239.
    • (2006) Neural Processing Letters , vol.24 , pp. 217-239
    • Gholipour, A.1    Araabi, B.N.2    Lucas, C.3
  • 16
    • 0023306390 scopus 로고
    • The dielectric permittivity of microbial suspensions at radio-frequencies: a novel method for the estimation of microbial biomass
    • Harris C.M., Todd R.W., Bungard S.J., Lovitt R.W., Morris J.G., Kell D.B. The dielectric permittivity of microbial suspensions at radio-frequencies: a novel method for the estimation of microbial biomass. Enzyme Microbial Technology 1987, 9:181-186.
    • (1987) Enzyme Microbial Technology , vol.9 , pp. 181-186
    • Harris, C.M.1    Todd, R.W.2    Bungard, S.J.3    Lovitt, R.W.4    Morris, J.G.5    Kell, D.B.6
  • 19
    • 84958978250 scopus 로고    scopus 로고
    • Efficient hybrid neural network for chaotic time series prediction, in: Proceedings of the International Conference on Artificial Neural Networks
    • H. Inoue, Y. Fukunaga, H. Narihisa, Efficient hybrid neural network for chaotic time series prediction, in: Proceedings of the International Conference on Artificial Neural Networks, 2001, pp. 712-718.
    • (2001) , pp. 712-718
    • Inoue, H.1    Fukunaga, Y.2    Narihisa, H.3
  • 22
    • 0001282028 scopus 로고
    • Method to distinguish possible chaos from colored noise and to determine embedding parameters
    • Kennel M.B. Method to distinguish possible chaos from colored noise and to determine embedding parameters. Physical Review A 1992, 46:3111-3118.
    • (1992) Physical Review A , vol.46 , pp. 3111-3118
    • Kennel, M.B.1
  • 23
    • 0031272838 scopus 로고    scopus 로고
    • Forecasting time series with genetic-fuzzy predictor ensemble
    • Kim D., Kim C. Forecasting time series with genetic-fuzzy predictor ensemble. IEEE Transactions on Fuzzy Systems 1997, 5:523-535.
    • (1997) IEEE Transactions on Fuzzy Systems , vol.5 , pp. 523-535
    • Kim, D.1    Kim, C.2
  • 24
    • 0036027191 scopus 로고    scopus 로고
    • Forecasting financial time series using neural network and fuzzy system-based techniques
    • Kodogiannis V., Lolis A. Forecasting financial time series using neural network and fuzzy system-based techniques. Neural Computing and Applications 2002, 11:90-102.
    • (2002) Neural Computing and Applications , vol.11 , pp. 90-102
    • Kodogiannis, V.1    Lolis, A.2
  • 25
    • 77955315690 scopus 로고    scopus 로고
    • Time series prediction with multilayer perceptron, FIR and Elman neural networks, in: Proceedings of the World Congress on Neural Networks
    • T. Koskela, M. Lehtokangas, J. Saarinen, K. Kaski, Time series prediction with multilayer perceptron, FIR and Elman neural networks, in: Proceedings of the World Congress on Neural Networks, 1996, pp. 491-496.
    • (1996) , pp. 491-496
    • Koskela, T.1    Lehtokangas, M.2    Saarinen, J.3    Kaski, K.4
  • 27
    • 0022011031 scopus 로고
    • Input-output parametric models for nonlinear systems-part I: deterministic nonlinear systems
    • Leontaritis I.J., Billings S.A. Input-output parametric models for nonlinear systems-part I: deterministic nonlinear systems. International Journal of Control 1985, 41(2):303-328.
    • (1985) International Journal of Control , vol.41 , Issue.2 , pp. 303-328
    • Leontaritis, I.J.1    Billings, S.A.2
  • 28
    • 33745955143 scopus 로고    scopus 로고
    • Neural network model for time series prediction by reinforcement learning, in: Proceedings of the International Joint Conference on Neural Networks, Montreal, Canada
    • F. Liu, C. Quek, G.S. Ng, Neural network model for time series prediction by reinforcement learning, in: Proceedings of the International Joint Conference on Neural Networks, Montreal, Canada, 2005.
    • (2005)
    • Liu, F.1    Quek, C.2    Ng, G.S.3
  • 31
    • 0004154108 scopus 로고
    • University of Washington Press, Seattle
    • Lorenz E.N. The Essence of Chaos 1993, University of Washington Press, Seattle.
    • (1993) The Essence of Chaos
    • Lorenz, E.N.1
  • 32
    • 38049039845 scopus 로고    scopus 로고
    • Chaotic time series prediction based on evolving recurrent neural networks, in: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong
    • Q. Ma, Q. Zheng, H. Peng, T. Zhong, L. Xu, Chaotic time series prediction based on evolving recurrent neural networks, in: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 2007.
    • (2007)
    • Ma, Q.1    Zheng, Q.2    Peng, H.3    Zhong, T.4    Xu, L.5
  • 33
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D.J.C. Bayesian interpolation. Neural Computation 1992, 4(3):415-447.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 34
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • MacKey M.C., Glass L. Oscillation and chaos in physiological control systems. Science 1977, 197(4300):287-289.
    • (1977) Science , vol.197 , Issue.4300 , pp. 287-289
    • MacKey, M.C.1    Glass, L.2
  • 35
    • 70449441600 scopus 로고    scopus 로고
    • A method for time series prediction using a combination of linear models, in: Proceedings of the European Symposium on Artificial Neural Network - Advances in Computational Intelligence and Learning, Bruges, Belgium
    • D. Martinez-Rego, O. Fontenla-Romero, A. Alonso-Betanzos, A method for time series prediction using a combination of linear models, in: Proceedings of the European Symposium on Artificial Neural Network - Advances in Computational Intelligence and Learning, Bruges, Belgium, 2008.
    • (2008)
    • Martinez-Rego, D.1    Fontenla-Romero, O.2    Alonso-Betanzos, A.3
  • 36
    • 0002843288 scopus 로고    scopus 로고
    • A nearest trajectory strategy for time series prediction, in: Proceedings of the International Workshop on Advanced Black-Box Techniques for Nonlinear Modeling, Katholieke Universiteit Leuven, Belgium
    • J. McNames, A nearest trajectory strategy for time series prediction, in: Proceedings of the International Workshop on Advanced Black-Box Techniques for Nonlinear Modeling, Katholieke Universiteit Leuven, Belgium, 1998, pp. 112-128.
    • (1998) , pp. 112-128
    • McNames, J.1
  • 38
    • 56549090156 scopus 로고    scopus 로고
    • Long-term time series prediction with the NARX network: an empirical evaluation
    • Menezes J.M., Barreto G.A. Long-term time series prediction with the NARX network: an empirical evaluation. Neurocomputing 2008, 71:3335-3343.
    • (2008) Neurocomputing , vol.71 , pp. 3335-3343
    • Menezes, J.M.1    Barreto, G.A.2
  • 39
    • 0034773657 scopus 로고    scopus 로고
    • Non-linear analysis of traffic flow, in: Proceedings of the IEEE Intelligent Transportation Systems Conference, Oakland
    • A.S. Nair, J.C. Liu, L. Rilett, S. Gupta, Non-linear analysis of traffic flow, in: Proceedings of the IEEE Intelligent Transportation Systems Conference, Oakland, 2001, pp. 25-29.
    • (2001) , pp. 25-29
    • Nair, A.S.1    Liu, J.C.2    Rilett, L.3    Gupta, S.4
  • 42
    • 0030109788 scopus 로고    scopus 로고
    • Predicting sun spots using a layered perceptron neural network
    • Park Y.R., Murray T.J., Chen C. Predicting sun spots using a layered perceptron neural network. IEEE Transactions on Neural Networks 1996, 1(2):501-505.
    • (1996) IEEE Transactions on Neural Networks , vol.1 , Issue.2 , pp. 501-505
    • Park, Y.R.1    Murray, T.J.2    Chen, C.3
  • 43
    • 77955340239 scopus 로고    scopus 로고
    • Neural and Adaptive Systems: Fundamentals through Simulations, (John Wiley & Sons, Inc.)
    • J.C. Principe, N.R. Euliano, and W.C. Lefebvre, Neural and Adaptive Systems: Fundamentals through Simulations, (John Wiley & Sons, Inc. 1999).
    • (1999)
    • Principe, J.C.1    Euliano, N.R.2    Lefebvre, W.C.3
  • 44
    • 33846516926 scopus 로고    scopus 로고
    • Stock market prediction with multiple classifiers
    • Qian B., Rasheed K. Stock market prediction with multiple classifiers. Applied Intelligence 2007, 26:25-33.
    • (2007) Applied Intelligence , vol.26 , pp. 25-33
    • Qian, B.1    Rasheed, K.2
  • 47
  • 48
    • 3042601136 scopus 로고    scopus 로고
    • Development of very-short-term load forecasting based on chaos theory
    • Seiji K., Hiroaki S., Hiroshi S. Development of very-short-term load forecasting based on chaos theory. Electrical Engineering in Japan 2004, 148:55-63.
    • (2004) Electrical Engineering in Japan , vol.148 , pp. 55-63
    • Seiji, K.1    Hiroaki, S.2    Hiroshi, S.3
  • 49
    • 0035494005 scopus 로고    scopus 로고
    • Solar cycle forecasting: a nonlinear dynamics approach
    • Sello S. Solar cycle forecasting: a nonlinear dynamics approach. Astronomy & Astrophysics 2001, 377:312-320.
    • (2001) Astronomy & Astrophysics , vol.377 , pp. 312-320
    • Sello, S.1
  • 50
    • 77955337684 scopus 로고    scopus 로고
    • SIDC (World Data Center for the Sunspot Index)
    • SIDC (World Data Center for the Sunspot Index), http://sidc.oma.be/index.php3.
  • 54
    • 35148864843 scopus 로고    scopus 로고
    • Chaotic time series prediction based on radial basis function network, in: Proceedings of the 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing
    • D. Tao, H. Xiao, Chaotic time series prediction based on radial basis function network, in: Proceedings of the 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, vol. 1, 2007, pp. 595-599.
    • (2007) , vol.1 , pp. 595-599
    • Tao, D.1    Xiao, H.2
  • 55
    • 0030291725 scopus 로고    scopus 로고
    • Forecasting foreign exchange rates using recurrent neural networks
    • Tenti P. Forecasting foreign exchange rates using recurrent neural networks. Applied Artificial Intelligence 1996, 10:567-581.
    • (1996) Applied Artificial Intelligence , vol.10 , pp. 567-581
    • Tenti, P.1
  • 56
    • 84957868979 scopus 로고    scopus 로고
    • Wavelet packet multi-layer perceptron for chaotic time series prediction: effects of weight initialization
    • Teo K., Wang L., Lin Z. Wavelet packet multi-layer perceptron for chaotic time series prediction: effects of weight initialization. Computational Science 2001, 2074:310-317.
    • (2001) Computational Science , vol.2074 , pp. 310-317
    • Teo, K.1    Wang, L.2    Lin, Z.3
  • 57
    • 77955323736 scopus 로고    scopus 로고
    • TSTOOL v. 1.11, 〈〉
    • TSTOOL v. 1.11, http://www.physik3.gwdg.de/tstool.
  • 58
    • 33745126985 scopus 로고    scopus 로고
    • Prediction of chaotic time series using LS-SVM with automatic parameter selection, in: Proceedings of the Sixth International Conference on Parallel and Distributed Computing - Applications and Technologies
    • X. Wang, H. Zhang, C. Zhang, X. Cai, J. Wang, Prediction of chaotic time series using LS-SVM with automatic parameter selection, in: Proceedings of the Sixth International Conference on Parallel and Distributed Computing - Applications and Technologies, 2005, pp. 962-965.
    • (2005) , pp. 962-965
    • Wang, X.1    Zhang, H.2    Zhang, C.3    Cai, X.4    Wang, J.5
  • 59
    • 57649193301 scopus 로고    scopus 로고
    • Forecasting chaotic time series based on improved genetic Wnn, in: Proceedings of the Fourth International Conference on Natural Computation, Jinan, China
    • Y. Wang, W. Jiang, S. Yuan, J. Wang, Forecasting chaotic time series based on improved genetic Wnn, in: Proceedings of the Fourth International Conference on Natural Computation, Jinan, China, 2008.
    • (2008)
    • Wang, Y.1    Jiang, W.2    Yuan, S.3    Wang, J.4
  • 60
    • 10944234944 scopus 로고    scopus 로고
    • Time series prediction with ensemble models, in: Proceedings of the IJCNN, Budapest, Hungary
    • J.D. Wichard, M. Ogorzalek, Time series prediction with ensemble models, in: Proceedings of the IJCNN, Budapest, Hungary, 2004, pp. 1625-1629.
    • (2004) , pp. 1625-1629
    • Wichard, J.D.1    Ogorzalek, M.2
  • 61
    • 33645212657 scopus 로고    scopus 로고
    • Chaos, complexity and supply-chains
    • Wilding R. Chaos, complexity and supply-chains. Logistics Focus 1998, 6:8-10.
    • (1998) Logistics Focus , vol.6 , pp. 8-10
    • Wilding, R.1
  • 63
    • 0008494528 scopus 로고
    • Determining Lyapunov exponents from a time series
    • Wolf A., Swift J.B., Swinney H.L., Vastano J.A. Determining Lyapunov exponents from a time series. Physica D 1985, 16:285-317.
    • (1985) Physica D , vol.16 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4
  • 64
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G., Patuwo B.E., Hu M.Y. Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting 1998, 14(1):35-62.
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 65
    • 44649136064 scopus 로고    scopus 로고
    • Chaotic Time series prediction using a neuro-fuzzy system with time-delay coordinates
    • Zhang J., Chung H.S., Lo W. Chaotic Time series prediction using a neuro-fuzzy system with time-delay coordinates. IEEE Transactions on Knowledge and Data Engineering 2008, 20(7):956-964.
    • (2008) IEEE Transactions on Knowledge and Data Engineering , vol.20 , Issue.7 , pp. 956-964
    • Zhang, J.1    Chung, H.S.2    Lo, W.3
  • 66
    • 77955323396 scopus 로고    scopus 로고
    • Time series prediction using recurrent neural network in multi-dimension embedding phase space
    • Zhang J., Man K.F. Time series prediction using recurrent neural network in multi-dimension embedding phase space. IEEE International Conference on Systems, Man, and Cybernetics 1998, 2:11-14.
    • (1998) IEEE International Conference on Systems, Man, and Cybernetics , vol.2 , pp. 11-14
    • Zhang, J.1    Man, K.F.2
  • 67
    • 0032274441 scopus 로고    scopus 로고
    • Time series prediction using Lyapunov exponents in embedding phase space, in: Proceedings of the Fourth International Conference on Signal Processing
    • J. Zhang, K.F. Man, J.Y. Ke, Time series prediction using Lyapunov exponents in embedding phase space, in: Proceedings of the Fourth International Conference on Signal Processing, vol. 1, 1998, pp. 221-224.
    • (1998) , vol.1 , pp. 221-224
    • Zhang, J.1    Man, K.F.2    Ke, J.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.