메뉴 건너뛰기




Volumn 143, Issue , 2014, Pages 164-169

A new nearest neighbor classifier via fusing neighborhood information

Author keywords

Distance metric; Nearest neighbor classifier; Neighborhood information; Rank aggregation

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 84904717982     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.06.009     Document Type: Article
Times cited : (25)

References (33)
  • 2
    • 85081819668 scopus 로고    scopus 로고
    • UCI machine learning repository, University of California, Irvine, School of Information and Computer Sciences, URL 〈〉
    • A. Asuncion, D. Newman, UCI machine learning repository, University of California, Irvine, School of Information and Computer Sciences, URL 〈〉, 2007. http://www.ics.uci.edu/mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 3
    • 79960398825 scopus 로고    scopus 로고
    • Vandana, survey of nearest neighbor techniques
    • Bhatia N. Vandana, survey of nearest neighbor techniques. Int. J. Comput. Sci. Inf. Secur. 2010, 8:302-305.
    • (2010) Int. J. Comput. Sci. Inf. Secur. , vol.8 , pp. 302-305
    • Bhatia, N.1
  • 4
    • 84255175580 scopus 로고    scopus 로고
    • An affinity-based new local distance function and similarity measure for k NN algorithm
    • Bhattacharya G., Ghosh K., Chowdhury A.S. An affinity-based new local distance function and similarity measure for k NN algorithm. Pattern Recognit. Lett. 2012, 33:356-363.
    • (2012) Pattern Recognit. Lett. , vol.33 , pp. 356-363
    • Bhattacharya, G.1    Ghosh, K.2    Chowdhury, A.S.3
  • 5
    • 67349174255 scopus 로고    scopus 로고
    • An initialization method for the K-Means algorithm using neighborhood model
    • Cao F., Liang J., Jiang G. An initialization method for the K-Means algorithm using neighborhood model. Comput. Math. Appl. 2009, 58:474-483.
    • (2009) Comput. Math. Appl. , vol.58 , pp. 474-483
    • Cao, F.1    Liang, J.2    Jiang, G.3
  • 8
    • 67349169047 scopus 로고    scopus 로고
    • A novel template reduction approach for the k-nearest neighbor method
    • Fayed H., Atiya A. A novel template reduction approach for the k-nearest neighbor method. IEEE Trans. Neural Netw. 2009, 20:890-896.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , pp. 890-896
    • Fayed, H.1    Atiya, A.2
  • 10
    • 0242712881 scopus 로고    scopus 로고
    • KNN model-based approach in classification, On the Move to Meaningful Internet Systems, CoopIS, DOA and ODBASE, Springer, Berlin Heidelberg
    • G. Guo, H. Wang, D. Bell, et al., KNN model-based approach in classification, On the Move to Meaningful Internet Systems, CoopIS, DOA and ODBASE, Springer, Berlin Heidelberg, 2003, pp. 986-996.
    • (2003) , pp. 986-996
    • Guo, G.1    Wang, H.2    Bell, D.3
  • 11
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T., Hart P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13:21-27.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 12
    • 78650231105 scopus 로고    scopus 로고
    • Large-margin nearest neighbor classifiers via sample weight learning
    • Hu Q., Zhu P., Yang Y., et al. Large-margin nearest neighbor classifiers via sample weight learning. Neurocomputing 2011, 74:656-660.
    • (2011) Neurocomputing , vol.74 , pp. 656-660
    • Hu, Q.1    Zhu, P.2    Yang, Y.3
  • 13
    • 36148978191 scopus 로고    scopus 로고
    • Neighborhood classifiers
    • Hu Q., Yu D., Xie Z. Neighborhood classifiers. Expert Syst. Appl. 2008, 34:866-876.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 866-876
    • Hu, Q.1    Yu, D.2    Xie, Z.3
  • 14
    • 3543068706 scopus 로고    scopus 로고
    • A Grey-based nearest neighbor approach for missing attribute value prediction
    • Huang C.-C., Lee H.-M. A Grey-based nearest neighbor approach for missing attribute value prediction. Appl. Intell. 2004, 20:239-252.
    • (2004) Appl. Intell. , vol.20 , pp. 239-252
    • Huang, C.-C.1    Lee, H.-M.2
  • 15
    • 84884281654 scopus 로고    scopus 로고
    • A fast prototype reduction method based on template reduction and visualization induced self-organizing map for nearest neighbor algorithm
    • Li I.-J., Chen J.-C., Wu J.-L. A fast prototype reduction method based on template reduction and visualization induced self-organizing map for nearest neighbor algorithm. Appl. Intell. 2013, 39:564-582.
    • (2013) Appl. Intell. , vol.39 , pp. 564-582
    • Li, I.-J.1    Chen, J.-C.2    Wu, J.-L.3
  • 17
    • 84865233213 scopus 로고    scopus 로고
    • Noisy data elimination using mutual k-nearest neighbor for classification mining
    • Liu H., Zhang S. Noisy data elimination using mutual k-nearest neighbor for classification mining. J. Syst. Softw. 2012, 85:1067-1074.
    • (2012) J. Syst. Softw. , vol.85 , pp. 1067-1074
    • Liu, H.1    Zhang, S.2
  • 18
    • 84888328793 scopus 로고    scopus 로고
    • Optical character recognition in real environments using neural networks and k-nearest neighbor
    • Matei O., Pop P., Valean H. Optical character recognition in real environments using neural networks and k-nearest neighbor. Appl. Intell. 2013, 39:739-748.
    • (2013) Appl. Intell. , vol.39 , pp. 739-748
    • Matei, O.1    Pop, P.2    Valean, H.3
  • 19
    • 0035441284 scopus 로고    scopus 로고
    • A fast nearest-neighbor algorithm based on a principal axis search tree
    • McNames J. A fast nearest-neighbor algorithm based on a principal axis search tree. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23(9):964-976.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.9 , pp. 964-976
    • McNames, J.1
  • 20
    • 84875716283 scopus 로고    scopus 로고
    • Local discriminative distance metrics ensemble learning
    • Mu Y., Ding W., Tao D. Local discriminative distance metrics ensemble learning. Pattern Recognit. 2013, 46:2337-2349.
    • (2013) Pattern Recognit. , vol.46 , pp. 2337-2349
    • Mu, Y.1    Ding, W.2    Tao, D.3
  • 21
    • 84878544778 scopus 로고    scopus 로고
    • Is the k-NN classifier in high dimensions affected by the curse of dimensionality?
    • Pestov V. Is the k-NN classifier in high dimensions affected by the curse of dimensionality?. Comput. Math. Appl. 2013, 65:1427-1437.
    • (2013) Comput. Math. Appl. , vol.65 , pp. 1427-1437
    • Pestov, V.1
  • 22
    • 0000228665 scopus 로고    scopus 로고
    • The cross-entropy method for combinatorial and continuous optimization
    • Rubinstein R. The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 1999, 1:127-190.
    • (1999) Methodol. Comput. Appl. Probab. , vol.1 , pp. 127-190
    • Rubinstein, R.1
  • 23
    • 85081816597 scopus 로고    scopus 로고
    • The Cross-Entropy Method, A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning, Springer, New York
    • R. Rubinstein, D. Kroese, The Cross-Entropy Method, A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning, Springer, New York, 2004.
    • (2004)
    • Rubinstein, R.1    Kroese, D.2
  • 24
    • 33745533615 scopus 로고    scopus 로고
    • Improving kNN text categorization by removing outliers from training set
    • Shin K., Abraham A., Han S. Improving kNN text categorization by removing outliers from training set. Comput. Linguist. Intell. Text Process. 2006, 563-566.
    • (2006) Comput. Linguist. Intell. Text Process. , pp. 563-566
    • Shin, K.1    Abraham, A.2    Han, S.3
  • 25
    • 38049101112 scopus 로고    scopus 로고
    • IKNN: informative k-nearest neighbor pattern classification
    • Lecture Notes in Artificial Intelligence
    • Y. Song, J. Huang, D. Zhou, et al., IKNN: informative k-nearest neighbor pattern classification, in: PKDD 2007, Lecture Notes in Artificial Intelligence, vol. 4702, pp. 248-264.
    • (2007) PKDD , vol.4702 , pp. 248-264
    • Song, Y.1    Huang, J.2    Zhou, D.3
  • 26
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
    • Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J. Mach. Learn. Res. 2007, 8:1027-1061.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 27
    • 33645990298 scopus 로고    scopus 로고
    • Nearest neighbors by neighborhood counting
    • Wang H. Nearest neighbors by neighborhood counting. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 28:942-953.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , pp. 942-953
    • Wang, H.1
  • 28
    • 33750796974 scopus 로고    scopus 로고
    • Improving nearest neighbor rule with a simple adaptive distance measure
    • Wang J., Neskovic P., Cooper L.N. Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognit. Lett. 2007, 28:207-213.
    • (2007) Pattern Recognit. Lett. , vol.28 , pp. 207-213
    • Wang, J.1    Neskovic, P.2    Cooper, L.N.3
  • 30
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • Wu X., Kumar V., Quinlan J., et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14(1):1-37.
    • (2008) Knowl. Inf. Syst. , vol.14 , Issue.1 , pp. 1-37
    • Wu, X.1    Kumar, V.2    Quinlan, J.3
  • 31
    • 49449088902 scopus 로고    scopus 로고
    • Learning a Mahalanobis distance metric for data clustering and classification
    • Xiang S., Nie F., Zhang C. Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recognit. 2008, 41:3600-3612.
    • (2008) Pattern Recognit. , vol.41 , pp. 3600-3612
    • Xiang, S.1    Nie, F.2    Zhang, C.3
  • 32
    • 84876103634 scopus 로고    scopus 로고
    • Coarse to fine K nearest neighbor classifier
    • Xu Y., Zhu Q., Fan Z., et al. Coarse to fine K nearest neighbor classifier. Pattern Recognit. Lett. 2013, 34:980-986.
    • (2013) Pattern Recognit. Lett. , vol.34 , pp. 980-986
    • Xu, Y.1    Zhu, Q.2    Fan, Z.3
  • 33
    • 84865249371 scopus 로고    scopus 로고
    • Nearest neighbor selection for iteratively kNN imputation
    • Zhang S. Nearest neighbor selection for iteratively kNN imputation. J. Syst. Softw. 2012, 85(11):2541-2552.
    • (2012) J. Syst. Softw. , vol.85 , Issue.11 , pp. 2541-2552
    • Zhang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.