메뉴 건너뛰기




Volumn 65, Issue 10, 2013, Pages 1427-1437

Is the k-NN classifier in high dimensions affected by the curse of dimensionality?

Author keywords

Approximate k NN classifier; Borel dimensionality reduction; Nearest neighbour search; The curse of dimensionality

Indexed keywords

CURSE OF DIMENSIONALITY; DIMENSIONALITY REDUCTION; HIGH DIMENSIONAL SPACES; K-NEAREST NEIGHBOURS; K-NN CLASSIFIER; NEAREST NEIGHBOUR SEARCH; NEAREST-NEIGHBOUR CLASSIFIER; STATISTICAL LEARNING;

EID: 84878544778     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2012.09.011     Document Type: Article
Times cited : (111)

References (38)
  • 1
    • 66549108289 scopus 로고    scopus 로고
    • Consistency and localizability
    • A. Zakai, and Y. Ritov Consistency and localizability J. Mach. Learn. Res. 10 2009 827 856
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 827-856
    • Zakai, A.1    Ritov, Y.2
  • 4
    • 24644489770 scopus 로고    scopus 로고
    • Nearest neighbours in high-dimensional spaces
    • J.E. Goodman, J. O'Rourke, Chapman and Hall, CRC Boca Raton, London, New York, Washington, DC
    • P. Indyk Nearest neighbours in high-dimensional spaces J.E. Goodman, J. O'Rourke, Handbook of Discrete and Computational Geometry 2004 Chapman and Hall, CRC Boca Raton, London, New York, Washington, DC 877 892
    • (2004) Handbook of Discrete and Computational Geometry , pp. 877-892
    • Indyk, P.1
  • 5
    • 84859786845 scopus 로고    scopus 로고
    • Indexability, concentration, and VC theory
    • 10.1016/j.jda.2011.10.002
    • V. Pestov Indexability, concentration, and VC theory J. Discrete Algorithms 13 2012 2 18 10.1016/j.jda.2011.10.002
    • (2012) J. Discrete Algorithms , vol.13 , pp. 2-18
    • Pestov, V.1
  • 6
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbours: Towards removing the curse of dimensionality
    • P. Indyk, R. Motwani, Approximate nearest neighbours: towards removing the curse of dimensionality, in: Proc. 30th ACM Symp. Theory of Computing, 1998, pp. 604-613.
    • (1998) Proc. 30th ACM Symp. Theory of Computing , pp. 604-613
    • Indyk, P.1    Motwani, R.2
  • 7
    • 0037492265 scopus 로고    scopus 로고
    • Efficient search for approximate nearest neighbor in high dimensional spaces
    • E. Kushilevitz, R. Ostrovsky, and Y. Rabani Efficient search for approximate nearest neighbor in high dimensional spaces SIAM J. Comput. 30 2000 457 474
    • (2000) SIAM J. Comput. , vol.30 , pp. 457-474
    • Kushilevitz, E.1    Ostrovsky, R.2    Rabani, Y.3
  • 8
    • 0000388992 scopus 로고
    • Consistent nonparametric regression
    • C. Stone Consistent nonparametric regression Ann. Statist. 5 1977 595 645
    • (1977) Ann. Statist. , vol.5 , pp. 595-645
    • Stone, C.1
  • 9
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • G.F. Hughes On the mean accuracy of statistical pattern recognizers IEEE Trans. Inform. Theory 14 1968 55 63
    • (1968) IEEE Trans. Inform. Theory , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 12
    • 33846119781 scopus 로고    scopus 로고
    • Nearest neighbor classification in infinite dimension
    • DOI 10.1051/ps:2006014
    • F. Cérou, and A. Guyader Nearest neighbor classification in infinite dimension ESAIM Probab. Stat. 10 2006 340 355 (Pubitemid 46054960)
    • (2006) ESAIM - Probability and Statistics , vol.10 , pp. 340-355
    • Cerou, F.1    Guyader, A.2
  • 13
    • 0010148406 scopus 로고
    • Gaussian measures and the density theorem
    • D. Preiss Gaussian measures and the density theorem Comment. Math. Univ. Carolin. 22 1981 181 193
    • (1981) Comment. Math. Univ. Carolin. , vol.22 , pp. 181-193
    • Preiss, D.1
  • 14
    • 0001244757 scopus 로고
    • On the almost everywhere convergence of nonparametric regression function estimates
    • L. Devroye On the almost everywhere convergence of nonparametric regression function estimates Ann. Statist. 9 1981 1310 1319
    • (1981) Ann. Statist. , vol.9 , pp. 1310-1319
    • Devroye, L.1
  • 15
    • 11144301661 scopus 로고
    • Dimension of metrics and differentiation of measures
    • Prague, 1981 Sigma Ser. Pure Math. Heldermann Berlin
    • D. Preiss Dimension of metrics and differentiation of measures General Topology and its Relations to Modern Analysis and Algebra, V Prague, 1981 Sigma Ser. Pure Math. vol. 3 1983 Heldermann Berlin 565 568
    • (1983) General Topology and Its Relations to Modern Analysis and Algebra, v , vol.3 , pp. 565-568
    • Preiss, D.1
  • 16
    • 34147174310 scopus 로고    scopus 로고
    • Recouvrements, derivation des mesures et dimensions
    • P. Assouad, and T. Quentin de Gromard Recouvrements, derivation des mesures et dimensions Rev. Mat. Iberoam. 22 2006 893 953
    • (2006) Rev. Mat. Iberoam. , vol.22 , pp. 893-953
    • Assouad, P.1    Quentin De Gromard, T.2
  • 19
    • 33646775288 scopus 로고    scopus 로고
    • Indexing schemes for similarity search: An illustrated paradigm
    • V. Pestov, and A. Stojmirović Indexing schemes for similarity search: an illustrated paradigm Fund. Inform. 70 2006 367 385 (Pubitemid 43760897)
    • (2006) Fundamenta Informaticae , vol.70 , Issue.4 , pp. 367-385
    • Pestov, V.1    Stojmirovic, A.2
  • 20
    • 0000681228 scopus 로고    scopus 로고
    • A quantatitive analysis and performance study for similarity-search methods in high-dimensional spaces
    • R. Weber, H.-J. Schek, S. Blott, A quantatitive analysis and performance study for similarity-search methods in high-dimensional spaces, in: Proceedings of the 24-th VLDB Conference, New York, 1998, pp. 194-205.
    • (1998) Proceedings of the 24-th VLDB Conference, New York , pp. 194-205
    • Weber, R.1    Schek, H.-J.2    Blott, S.3
  • 22
    • 0033702347 scopus 로고    scopus 로고
    • Tighter lower bounds for nearest neighbor search and related problems in the cell probe model
    • O. Barkol, Y. Rabani, Tighter lower bounds for nearest neighbor search and related problems in the cell probe model, in: Proc. 32nd ACM Symp. on the Theory of Computing, 2000, pp. 388-396.
    • (2000) Proc. 32nd ACM Symp. on the Theory of Computing , pp. 388-396
    • Barkol, O.1    Rabani, Y.2
  • 23
    • 35449001981 scopus 로고    scopus 로고
    • Higher lower bounds for near-neighbor and further rich problems
    • DOI 10.1109/FOCS.2006.35, 4031399, 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006
    • M. Pǎtrascu, M. Thorup, Higher lower bounds for near-neighbor and further rich problems, in: Proc. 47th IEEE Symp. on Foundations of Computer Science, 2006, pp. 646-654. (Pubitemid 351175552)
    • (2006) Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS , pp. 646-654
    • Patrscu, M.1    Thorup, M.2
  • 25
    • 84878549142 scopus 로고    scopus 로고
    • Lower bounds on performance of metric tree indexing schemes for exact similarity search in high dimensions
    • 10.1007/s00453-012-9638-2
    • V. Pestov Lower bounds on performance of metric tree indexing schemes for exact similarity search in high dimensions Algorithmica 2012 21 10.1007/s00453-012-9638-2
    • (2012) Algorithmica , pp. 21
    • Pestov, V.1
  • 26
    • 14844315829 scopus 로고    scopus 로고
    • DIMACS Series in Discrete Mathematics and Theoretical Computer Science Amer. Math. Soc. Providence, RI
    • S.S. Vempala The Random Projection Method DIMACS Series in Discrete Mathematics and Theoretical Computer Science vol. 65 2004 Amer. Math. Soc. Providence, RI
    • (2004) The Random Projection Method , vol.65
    • Vempala, S.S.1
  • 27
  • 28
    • 0011275803 scopus 로고
    • Rk do not cut all subsets of k + 2 points
    • Rk do not cut all subsets of k + 2 points Adv. Math. 31 1979 305 308
    • (1979) Adv. Math. , vol.31 , pp. 305-308
    • Dudley, R.M.1
  • 32
    • 40649090828 scopus 로고    scopus 로고
    • An axiomatic approach to intrinsic dimension of a dataset
    • V. Pestov An axiomatic approach to intrinsic dimension of a dataset Neural Netw. 21 2-3 2008 204 213
    • (2008) Neural Netw. , vol.21 , Issue.23 , pp. 204-213
    • Pestov, V.1
  • 34
    • 85032751369 scopus 로고    scopus 로고
    • Convex optimizations for distance metric learning and pattern classification
    • K.Q. Weinberger, F. Sha, and L.K. Saul Convex optimizations for distance metric learning and pattern classification IEEE Signal Process. Mag. 27 2010 146 158
    • (2010) IEEE Signal Process. Mag. , vol.27 , pp. 146-158
    • Weinberger, K.Q.1    Sha, F.2    Saul, L.K.3
  • 36
  • 38
    • 84942933028 scopus 로고    scopus 로고
    • The emergence of topological dimension theory (with the assistance of Dale Johnson)
    • North-Holland Amsterdam
    • T. Crilly The emergence of topological dimension theory (with the assistance of Dale Johnson) History of Topology 1999 North-Holland Amsterdam 1 24
    • (1999) History of Topology , pp. 1-24
    • Crilly, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.