메뉴 건너뛰기




Volumn , Issue , 2014, Pages 73-82

Addressing cold start in recommender systems: A semi-supervised co-training algorithm

Author keywords

Cold start; Recommendation; Semi supervised learning

Indexed keywords

LEARNING ALGORITHMS; MATHEMATICAL MODELS; RECOMMENDER SYSTEMS;

EID: 84904556934     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2600428.2609599     Document Type: Conference Paper
Times cited : (140)

References (31)
  • 2
    • 36849079891 scopus 로고    scopus 로고
    • Modeling relationships at multiple scales to improve accuracy of large recommender systems
    • R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD'07, pages 95-104, 2007.
    • (2007) KDD'07 , pp. 95-104
    • Bell, R.1    Koren, Y.2    Volinsky, C.3
  • 3
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT'98, 1998.
    • (1998) COLT'98
    • Blum, A.1    Mitchell, T.2
  • 4
    • 34249308531 scopus 로고    scopus 로고
    • A content-collaborative recommender that exploits wordnet-based user profiles for neighborhood formation
    • M. Degemmis, P. Lops, and G. Semeraro. A content-collaborative recommender that exploits wordnet-based user profiles for neighborhood formation. User Modeling and User-Adapted Interaction, 17(3):217-255, 2007.
    • (2007) User Modeling and User-Adapted Interaction , vol.17 , Issue.3 , pp. 217-255
    • Degemmis, M.1    Lops, P.2    Semeraro, G.3
  • 7
    • 82555183093 scopus 로고    scopus 로고
    • Yahoo! music recommendations: Modeling music ratings with temporal dynamics and item taxonomy
    • G. Dror, N. Koenigstein, and Y. Koren. Yahoo! music recommendations: Modeling music ratings with temporal dynamics and item taxonomy. In RecSys'11, pages 165-172, 2011.
    • (2011) RecSys'11 , pp. 165-172
    • Dror, G.1    Koenigstein, N.2    Koren, Y.3
  • 8
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A constant time collaborative filtering algorithm
    • K. Goldberg, T. Roeder, D.Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4(2):133-151, 2001.
    • (2001) Information Retrieval , vol.4 , Issue.2 , pp. 133-151
    • Goldberg, K.1    Roeder, T.2    Gupta, D.3    Perkins, C.4
  • 9
    • 0032596552 scopus 로고    scopus 로고
    • Combining collaborative filtering with personal agents for better recommendations
    • N. Good, J. Schafer, and J. etc. Combining collaborative filtering with personal agents for better recommendations. In AAAI'99, pages 439-446, 1999.
    • (1999) AAAI'99 , pp. 439-446
    • Good, N.1    Schafer, J.2
  • 10
    • 84896061409 scopus 로고    scopus 로고
    • Improving the performance of recommender systems by alleviating the data sparsity and cold start problems
    • G. Guo. Improving the performance of recommender systems by alleviating the data sparsity and cold start problems. In IJCAI'13, pages 3217-3218, 2013.
    • (2013) IJCAI'13 , pp. 3217-3218
    • Guo, G.1
  • 11
    • 0034446870 scopus 로고    scopus 로고
    • Explaining collaborative filtering recommendations
    • J. Herlocker, J. Konstan, and J. Riedl. Explaining collaborative filtering recommendations. In CSCW'00, pages 241-250, 2000.
    • (2000) CSCW'00 , pp. 241-250
    • Herlocker, J.1    Konstan, J.2    Riedl, J.3
  • 13
    • 72449160235 scopus 로고    scopus 로고
    • On social networks and collaborative recommendation
    • I. Konstas, V. Stathopoulos, and J. M. Jose. On social networks and collaborative recommendation. In SIGIR'09, pages 195-202, 2009.
    • (2009) SIGIR'09 , pp. 195-202
    • Konstas, I.1    Stathopoulos, V.2    Jose, J.M.3
  • 14
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In KDD'08, pages 426-434, 2008.
    • (2008) KDD'08 , pp. 426-434
    • Koren, Y.1
  • 16
    • 84904582434 scopus 로고    scopus 로고
    • Combining usage, content, and structure data to improve web site recommendation
    • J. Li and O. Zaiane. Combining usage, content, and structure data to improve web site recommendation. In EC-Web'04, 2004.
    • (2004) EC-Web'04
    • Li, J.1    Zaiane, O.2
  • 17
    • 84883077350 scopus 로고    scopus 로고
    • Addressing cold-start in app recommendation: Latent user models constructed from twitter followers
    • J. Lin, K. Sugiyama, M.-Y. Kan, and T.-S. Chua. Addressing cold-start in app recommendation: Latent user models constructed from twitter followers. In SIGIR'13, pages 283-293, 2013.
    • (2013) SIGIR'13 , pp. 283-293
    • Lin, J.1    Sugiyama, K.2    Kan, M.-Y.3    Chua, T.-S.4
  • 18
    • 0036932094 scopus 로고    scopus 로고
    • Content-boosted collaborative filtering for improved recommendations
    • P. Melville, R. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. In AAAI'02, pages 187-192, 2002.
    • (2002) AAAI'02 , pp. 187-192
    • Melville, P.1    Mooney, R.2    Nagarajan, R.3
  • 19
    • 72249103222 scopus 로고    scopus 로고
    • Pairwise preference regression for cold-start recommendation
    • S.-T. Park and W. Chu. Pairwise preference regression for cold-start recommendation. In RecSys'09, pages 21-28, 2009.
    • (2009) RecSys'09 , pp. 21-28
    • Park, S.-T.1    Chu, W.2
  • 20
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • L. Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1):1-39, 2010.
    • (2010) Artificial Intelligence Review , vol.33 , Issue.1 , pp. 1-39
    • Rokach, L.1
  • 21
    • 0032276564 scopus 로고    scopus 로고
    • Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system
    • B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system. In CSCW'98, pages 345-354, 1998.
    • (1998) CSCW'98 , pp. 345-354
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Riedl, J.4
  • 22
    • 0036989477 scopus 로고    scopus 로고
    • Methods and metrics for cold-start recommendations
    • A. Schein, A. Popescul, L. Ungar, and D. Pennock. Methods and metrics for cold-start recommendations. In SIGIR'02, pages 253-260, 2002.
    • (2002) SIGIR'02 , pp. 253-260
    • Schein, A.1    Popescul, A.2    Ungar, L.3    Pennock, D.4
  • 24
    • 84874246335 scopus 로고    scopus 로고
    • Learning multiple-question decision trees for cold-start recommendation
    • M. Sun, F. Li, J. Lee, K. Zhou, G. Lebanon, and H. Zha. Learning multiple-question decision trees for cold-start recommendation. In WSDM'13, pages 445-454, 2013.
    • (2013) WSDM'13 , pp. 445-454
    • Sun, M.1    Li, F.2    Lee, J.3    Zhou, K.4    Lebanon, G.5    Zha, H.6
  • 26
    • 84866020834 scopus 로고    scopus 로고
    • Cross-domain collaboration recommendation
    • J. Tang, S. Wu, J. Sun, and H. Su. Cross-domain collaboration recommendation. In KDD'12, pages 1285-1294, 2012.
    • (2012) KDD'12 , pp. 1285-1294
    • Tang, J.1    Wu, S.2    Sun, J.3    Su, H.4
  • 29
    • 80052119372 scopus 로고    scopus 로고
    • Functional matrix factorizations for cold-start recommendation
    • K. Zhou, S.-H. Yang, and H. Zha. Functional matrix factorizations for cold-start recommendation. In SIGIR'11, pages 315-324, 2011.
    • (2011) SIGIR'11 , pp. 315-324
    • Zhou, K.1    Yang, S.-H.2    Zha, H.3
  • 30
    • 84880742718 scopus 로고    scopus 로고
    • Semi-supervised regression with co-training
    • Z.-H. Zhou and M. Li. Semi-supervised regression with co-training. In IJCAI'05, pages 908-913, 2005.
    • (2005) IJCAI'05 , pp. 908-913
    • Zhou, Z.-H.1    Li, M.2
  • 31
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • Z.-H. Zhou and M. Li. Semi-supervised learning by disagreement. Knowledge and Information Systems, 24(3):415-439, 2010.
    • (2010) Knowledge and Information Systems , vol.24 , Issue.3 , pp. 415-439
    • Zhou, Z.-H.1    Li, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.