-
2
-
-
36849079891
-
Modeling relationships at multiple scales to improve accuracy of large recommender systems
-
R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD'07, pages 95-104, 2007.
-
(2007)
KDD'07
, pp. 95-104
-
-
Bell, R.1
Koren, Y.2
Volinsky, C.3
-
3
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT'98, 1998.
-
(1998)
COLT'98
-
-
Blum, A.1
Mitchell, T.2
-
4
-
-
34249308531
-
A content-collaborative recommender that exploits wordnet-based user profiles for neighborhood formation
-
M. Degemmis, P. Lops, and G. Semeraro. A content-collaborative recommender that exploits wordnet-based user profiles for neighborhood formation. User Modeling and User-Adapted Interaction, 17(3):217-255, 2007.
-
(2007)
User Modeling and User-Adapted Interaction
, vol.17
, Issue.3
, pp. 217-255
-
-
Degemmis, M.1
Lops, P.2
Semeraro, G.3
-
7
-
-
82555183093
-
Yahoo! music recommendations: Modeling music ratings with temporal dynamics and item taxonomy
-
G. Dror, N. Koenigstein, and Y. Koren. Yahoo! music recommendations: Modeling music ratings with temporal dynamics and item taxonomy. In RecSys'11, pages 165-172, 2011.
-
(2011)
RecSys'11
, pp. 165-172
-
-
Dror, G.1
Koenigstein, N.2
Koren, Y.3
-
8
-
-
0002549585
-
Eigentaste: A constant time collaborative filtering algorithm
-
K. Goldberg, T. Roeder, D.Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4(2):133-151, 2001.
-
(2001)
Information Retrieval
, vol.4
, Issue.2
, pp. 133-151
-
-
Goldberg, K.1
Roeder, T.2
Gupta, D.3
Perkins, C.4
-
9
-
-
0032596552
-
Combining collaborative filtering with personal agents for better recommendations
-
N. Good, J. Schafer, and J. etc. Combining collaborative filtering with personal agents for better recommendations. In AAAI'99, pages 439-446, 1999.
-
(1999)
AAAI'99
, pp. 439-446
-
-
Good, N.1
Schafer, J.2
-
10
-
-
84896061409
-
Improving the performance of recommender systems by alleviating the data sparsity and cold start problems
-
G. Guo. Improving the performance of recommender systems by alleviating the data sparsity and cold start problems. In IJCAI'13, pages 3217-3218, 2013.
-
(2013)
IJCAI'13
, pp. 3217-3218
-
-
Guo, G.1
-
11
-
-
0034446870
-
Explaining collaborative filtering recommendations
-
J. Herlocker, J. Konstan, and J. Riedl. Explaining collaborative filtering recommendations. In CSCW'00, pages 241-250, 2000.
-
(2000)
CSCW'00
, pp. 241-250
-
-
Herlocker, J.1
Konstan, J.2
Riedl, J.3
-
13
-
-
72449160235
-
On social networks and collaborative recommendation
-
I. Konstas, V. Stathopoulos, and J. M. Jose. On social networks and collaborative recommendation. In SIGIR'09, pages 195-202, 2009.
-
(2009)
SIGIR'09
, pp. 195-202
-
-
Konstas, I.1
Stathopoulos, V.2
Jose, J.M.3
-
14
-
-
65449121157
-
Factorization meets the neighborhood: A multifaceted collaborative filtering model
-
Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In KDD'08, pages 426-434, 2008.
-
(2008)
KDD'08
, pp. 426-434
-
-
Koren, Y.1
-
16
-
-
84904582434
-
Combining usage, content, and structure data to improve web site recommendation
-
J. Li and O. Zaiane. Combining usage, content, and structure data to improve web site recommendation. In EC-Web'04, 2004.
-
(2004)
EC-Web'04
-
-
Li, J.1
Zaiane, O.2
-
17
-
-
84883077350
-
Addressing cold-start in app recommendation: Latent user models constructed from twitter followers
-
J. Lin, K. Sugiyama, M.-Y. Kan, and T.-S. Chua. Addressing cold-start in app recommendation: Latent user models constructed from twitter followers. In SIGIR'13, pages 283-293, 2013.
-
(2013)
SIGIR'13
, pp. 283-293
-
-
Lin, J.1
Sugiyama, K.2
Kan, M.-Y.3
Chua, T.-S.4
-
18
-
-
0036932094
-
Content-boosted collaborative filtering for improved recommendations
-
P. Melville, R. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. In AAAI'02, pages 187-192, 2002.
-
(2002)
AAAI'02
, pp. 187-192
-
-
Melville, P.1
Mooney, R.2
Nagarajan, R.3
-
19
-
-
72249103222
-
Pairwise preference regression for cold-start recommendation
-
S.-T. Park and W. Chu. Pairwise preference regression for cold-start recommendation. In RecSys'09, pages 21-28, 2009.
-
(2009)
RecSys'09
, pp. 21-28
-
-
Park, S.-T.1
Chu, W.2
-
20
-
-
75149176174
-
Ensemble-based classifiers
-
L. Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1):1-39, 2010.
-
(2010)
Artificial Intelligence Review
, vol.33
, Issue.1
, pp. 1-39
-
-
Rokach, L.1
-
21
-
-
0032276564
-
Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system
-
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system. In CSCW'98, pages 345-354, 1998.
-
(1998)
CSCW'98
, pp. 345-354
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
-
22
-
-
0036989477
-
Methods and metrics for cold-start recommendations
-
A. Schein, A. Popescul, L. Ungar, and D. Pennock. Methods and metrics for cold-start recommendations. In SIGIR'02, pages 253-260, 2002.
-
(2002)
SIGIR'02
, pp. 253-260
-
-
Schein, A.1
Popescul, A.2
Ungar, L.3
Pennock, D.4
-
24
-
-
84874246335
-
Learning multiple-question decision trees for cold-start recommendation
-
M. Sun, F. Li, J. Lee, K. Zhou, G. Lebanon, and H. Zha. Learning multiple-question decision trees for cold-start recommendation. In WSDM'13, pages 445-454, 2013.
-
(2013)
WSDM'13
, pp. 445-454
-
-
Sun, M.1
Li, F.2
Lee, J.3
Zhou, K.4
Lebanon, G.5
Zha, H.6
-
25
-
-
64149121935
-
Scalable collaborative filtering approaches for large recommender systems
-
G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. Scalable collaborative filtering approaches for large recommender systems. Journal of Machine Learning Research, 10:623-656, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 623-656
-
-
Takacs, G.1
Pilaszy, I.2
Nemeth, B.3
Tikk, D.4
-
26
-
-
84866020834
-
Cross-domain collaboration recommendation
-
J. Tang, S. Wu, J. Sun, and H. Su. Cross-domain collaboration recommendation. In KDD'12, pages 1285-1294, 2012.
-
(2012)
KDD'12
, pp. 1285-1294
-
-
Tang, J.1
Wu, S.2
Sun, J.3
Su, H.4
-
28
-
-
80052108918
-
Social context summarization
-
Z. Yang, K. Cai, J. Tang, L. Zhang, Z. Su, and J. Li. Social context summarization. In SIGIR'11, pages 255-264, 2011.
-
(2011)
SIGIR'11
, pp. 255-264
-
-
Yang, Z.1
Cai, K.2
Tang, J.3
Zhang, L.4
Su, Z.5
Li, J.6
-
29
-
-
80052119372
-
Functional matrix factorizations for cold-start recommendation
-
K. Zhou, S.-H. Yang, and H. Zha. Functional matrix factorizations for cold-start recommendation. In SIGIR'11, pages 315-324, 2011.
-
(2011)
SIGIR'11
, pp. 315-324
-
-
Zhou, K.1
Yang, S.-H.2
Zha, H.3
-
30
-
-
84880742718
-
Semi-supervised regression with co-training
-
Z.-H. Zhou and M. Li. Semi-supervised regression with co-training. In IJCAI'05, pages 908-913, 2005.
-
(2005)
IJCAI'05
, pp. 908-913
-
-
Zhou, Z.-H.1
Li, M.2
-
31
-
-
77956708689
-
Semi-supervised learning by disagreement
-
Z.-H. Zhou and M. Li. Semi-supervised learning by disagreement. Knowledge and Information Systems, 24(3):415-439, 2010.
-
(2010)
Knowledge and Information Systems
, vol.24
, Issue.3
, pp. 415-439
-
-
Zhou, Z.-H.1
Li, M.2
|