메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1511-1520

Localized matrix factorization for recommendation based on matrix Block Diagonal Forms

Author keywords

Block Diagonal Form; Collaborative Filtering; Graph Partitioning; Matrix Factorization

Indexed keywords

COLLABORATIVE FILTERING; FACTORIZATION; SCALABILITY; WORLD WIDE WEB;

EID: 84893055784     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2488388.2488520     Document Type: Conference Paper
Times cited : (67)

References (38)
  • 1
    • 77957553895 scopus 로고    scopus 로고
    • Principal component analysis
    • H. Abdi and L. J. Williams. Principal component analysis. WIREs Comp Stat, 2:433-459, 2010.
    • (2010) WIREs Comp Stat , vol.2 , pp. 433-459
    • Abdi, H.1    Williams, L.J.2
  • 2
    • 73849131792 scopus 로고    scopus 로고
    • Multiway spectral clustering with out-of-sample extensions through weighted kernel pca
    • C. Alzate and J. A. Suykens. Multiway spectral clustering with out-of-sample extensions through weighted kernel pca. PAMI, 32:335-347, 2010.
    • (2010) PAMI , vol.32 , pp. 335-347
    • Alzate, C.1    Suykens, J.A.2
  • 3
    • 84868005144 scopus 로고    scopus 로고
    • Graph spectral techniques in computer sciences
    • B. Arsic et al. Graph spectral techniques in computer sciences. Appl. Anal. Discrete Math, 6:1-30, 2012.
    • (2012) Appl. Anal. Discrete Math , vol.6 , pp. 1-30
    • Arsic, B.1
  • 4
    • 10244251766 scopus 로고    scopus 로고
    • Permuting sparse rectangular matrices into block-diagonal form
    • C. Aykanat et al. Permuting sparse rectangular matrices into block-diagonal form. SISC, 2004.
    • (2004) SISC
    • Aykanat, C.1
  • 6
    • 84879770012 scopus 로고    scopus 로고
    • A nested dissection approach to sparse matrix partitioning for parallel computations
    • E. Boman and M. Wolf. A nested dissection approach to sparse matrix partitioning for parallel computations. AMM, 2007.
    • (2007) AMM
    • Boman, E.1    Wolf, M.2
  • 7
    • 0000301477 scopus 로고
    • Finding good approximate vertex and edge partitions is np-hard
    • T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is np-hard. IPL, 1992.
    • (1992) IPL
    • Bui, T.N.1    Jones, C.2
  • 8
    • 84861732705 scopus 로고    scopus 로고
    • Dense subgraph extraction with application to community detection
    • J. Chen and Y. Saad. Dense subgraph extraction with application to community detection. TKDE, 2012.
    • (2012) TKDE
    • Chen, J.1    Saad, Y.2
  • 9
    • 84893033564 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • I. S. Dhilon et al. Concept decompositions for large sparse text data using clustering. JMLR, 2001.
    • (2001) JMLR
    • Dhilon, I.S.1
  • 10
    • 84893085951 scopus 로고    scopus 로고
    • Clsi: A exible approximation scheme from clustered term-document matrices
    • E. Gallopoulos and D. Zeimpekis. Clsi: A exible approximation scheme from clustered term-document matrices. SDM, 2005.
    • (2005) SDM
    • Gallopoulos, E.1    Zeimpekis, D.2
  • 11
    • 80052668032 scopus 로고    scopus 로고
    • Large-scale matrix factorization with distributed stochastic gradient descent
    • R. Gemulla et al. Large-scale matrix factorization with distributed stochastic gradient descent. KDD, 2011.
    • (2011) KDD
    • Gemulla, R.1
  • 12
    • 85015559680 scopus 로고    scopus 로고
    • An algorithmic framework for performing collaborative filtering
    • J. Herlocker et al. An algorithmic framework for performing collaborative filtering. SIGIR, 1999.
    • (1999) SIGIR
    • Herlocker, J.1
  • 14
    • 0013017899 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • G. Karypis et al. A fast and high quality multilevel scheme for partitioning irregular graphs. SISC, 1999.
    • (1999) SISC
    • Karypis, G.1
  • 15
    • 84860414934 scopus 로고    scopus 로고
    • Genetic approaches for graph partitioning: A survey
    • J. Kim, I. Hwang, Y. Kim, et al. Genetic approaches for graph partitioning: A survey. CECCO, 2011.
    • (2011) CECCO
    • Kim, J.1    Hwang, I.2    Kim, Y.3
  • 16
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. KDD, 2008.
    • (2008) KDD
    • Koren, Y.1
  • 17
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, et al. Matrix factorization techniques for recommender systems. Computer, 2009.
    • (2009) Computer
    • Koren, Y.1    Bell, R.2
  • 18
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects with nonnegative matrix factorization
    • D. Lee and H. Seung. Learning the parts of objects with nonnegative matrix factorization. Nature, 1999.
    • (1999) Nature
    • Lee, D.1    Seung, H.2
  • 19
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. Lee and H. Seung. Algorithms for non-negative matrix factorization. NIPS, 2001.
    • (2001) NIPS
    • Lee, D.1    Seung, H.2
  • 20
    • 77954604765 scopus 로고    scopus 로고
    • Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce
    • C. Liu, H. Yang, J. Fan, L. He, et al. Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce. WWW, 2010.
    • (2010) WWW
    • Liu, C.1    Yang, H.2    Fan, J.3    He, L.4
  • 21
    • 69549107906 scopus 로고    scopus 로고
    • Recent advances in personal recommender systems
    • J. Liu, M. Chen, J. Chen, et al. Recent advances in personal recommender systems. JISS, 2009.
    • (2009) JISS
    • Liu, J.1    Chen, M.2    Chen, J.3
  • 23
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J. Rennie et al. Fast maximum margin matrix factorization for collaborative prediction. ICML, 2005.
    • (2005) ICML
    • Rennie, J.1
  • 24
    • 85030174634 scopus 로고
    • Grouplens: An open architecture for collaborative filtering of netnews
    • P. Resnick et al. Grouplens: An open architecture for collaborative filtering of netnews. CSCW, 1994.
    • (1994) CSCW
    • Resnick, P.1
  • 25
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using markov chain monte carlo
    • R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. ICML, 2008.
    • (2008) ICML
    • Salakhutdinov, R.1    Mnih, A.2
  • 26
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. NIPS, 2008.
    • (2008) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 27
    • 84883064004 scopus 로고    scopus 로고
    • Engineering multilevel graph partitioning algorithms
    • P. Sanders and C. Schulz. Engineering multilevel graph partitioning algorithms. ESA, 2011.
    • (2011) ESA
    • Sanders, P.1    Schulz, C.2
  • 28
    • 3042788736 scopus 로고    scopus 로고
    • Application of dimension reduction in recommender systems - A case study
    • B. Sarwar et al. Application of dimension reduction in recommender systems - a case study. WebKDD, 2000.
    • (2000) WebKDD
    • Sarwar, B.1
  • 29
    • 0038003568 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • B. Sarwar, G. Karypis, et al. Item-based collaborative filtering recommendation algorithms. WWW, 2001.
    • (2001) WWW
    • Sarwar, B.1    Karypis, G.2
  • 30
    • 70749101696 scopus 로고    scopus 로고
    • Incremental singular value decomposition algorithms for highly scalable recommender systems
    • B. Sarwar, G. Karypis, et al. Incremental singular value decomposition algorithms for highly scalable recommender systems. ICCIT, 2002.
    • (2002) ICCIT
    • Sarwar, B.1    Karypis, G.2
  • 31
    • 84864650291 scopus 로고    scopus 로고
    • Clustered low rank approximation of graphs in information science applications
    • B. Savas et al. Clustered low rank approximation of graphs in information science applications. SDM, 2011.
    • (2011) SDM
    • Savas, B.1
  • 32
    • 65449121541 scopus 로고    scopus 로고
    • Relational learning via collective matrix factorization
    • A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. KDD, 2008.
    • (2008) KDD
    • Singh, A.P.1    Gordon, G.J.2
  • 33
    • 1942516801 scopus 로고    scopus 로고
    • Weighted low-rank approximations
    • N. Srebro and T. Jaakkola. Weighted low-rank approximations. ICML, 2003.
    • (2003) ICML
    • Srebro, N.1    Jaakkola, T.2
  • 35
    • 77954418047 scopus 로고    scopus 로고
    • A survey of collaborative filtering techniques
    • X. Su and T. Khoshgoftaar. A survey of collaborative filtering techniques. Advances in AI., 2009.
    • (2009) Advances in AI.
    • Su, X.1    Khoshgoftaar, T.2
  • 36
    • 62449225003 scopus 로고    scopus 로고
    • Investigation of various matrix factorization methods for large recommender systems
    • G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. Investigation of various matrix factorization methods for large recommender systems. ICDM, 2008.
    • (2008) ICDM
    • Takacs, G.1    Pilaszy, I.2    Nemeth, B.3    Tikk, D.4
  • 37
    • 84860870379 scopus 로고    scopus 로고
    • An exploration of improving collaborative recommender systems via user-item subgroups
    • B. Xu, J. Bu, and C. Chen. An exploration of improving collaborative recommender systems via user-item subgroups. WWW, 2012.
    • (2012) WWW
    • Xu, B.1    Bu, J.2    Chen, C.3
  • 38
    • 84885578920 scopus 로고    scopus 로고
    • Scalable collaborative filtering using cluster-based smoothing
    • G. Xue, C. Lin, Q. Yang, et al. Scalable collaborative filtering using cluster-based smoothing. SIGIR, 2005.
    • (2005) SIGIR
    • Xue, G.1    Lin, C.2    Yang, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.