메뉴 건너뛰기




Volumn 2, Issue , 2009, Pages 634-645

Multiple kernel clustering

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER LABELING; DATA SAMPLE; FEATURE SPACE; KERNEL FUNCTION; KERNEL METHODS; LABELINGS; MACHINE LEARNING COMMUNITIES; MAXIMUM MARGIN; MULTI-CLASS; MULTIPLE KERNELS; REAL WORLD DATA; TIME COMPLEXITY;

EID: 72749126111     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (118)

References (33)
  • 1
    • 14344252374 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the SMO algorithm
    • F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In ICML, 2004.
    • (2004) ICML
    • Bach, F.1    Lanckriet, G.2    Jordan, M.3
  • 2
    • 84899006163 scopus 로고    scopus 로고
    • On the complexity of learning the kernel matrix
    • O. Bousquet and D. Herrmann. On the complexity of learning the kernel matrix. In NIPS, 2003.
    • (2003) NIPS
    • Bousquet, O.1    Herrmann, D.2
  • 6
    • 51949086172 scopus 로고    scopus 로고
    • Semi-supervised classi cation by low density separation
    • O. Chapelle and A. Zien. Semi-supervised classi cation by low density separation. In AISTATS, 2005.
    • (2005) AISTATS
    • Chapelle, O.1    Zien, A.2
  • 7
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. JMLR, 2:265-292, 2001.
    • (2001) JMLR , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 8
    • 78149301227 scopus 로고    scopus 로고
    • A min-max cut algorithm for graph partitioning and data mining
    • C. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm for graph partitioning and data mining. In ICDM, pages 107-114, 2001.
    • (2001) ICDM , pp. 107-114
    • Ding, C.1    He, X.2    Zha, H.3    Gu, M.4    Simon, H.D.5
  • 10
    • 56449124689 scopus 로고    scopus 로고
    • Localized multiple kernel learning
    • M. Gonen and E. Alpaydin. Localized multiple kernel learning. In ICML, 2008.
    • (2008) ICML
    • Gonen, M.1    Alpaydin, E.2
  • 11
    • 33749563073 scopus 로고    scopus 로고
    • Training linear SVMs in linear time
    • T. Joachims. Training linear SVMs in linear time. In SIGKDD, 2006.
    • (2006) SIGKDD
    • Joachims, T.1
  • 17
    • 21844468979 scopus 로고    scopus 로고
    • Learning the kernel with hyperkernels
    • C. Ong, A. Smola, and R. Williamson. Learning the kernel with hyperkernels. JMLR, 6:1043-1071, 2005.
    • (2005) JMLR , vol.6 , pp. 1043-1071
    • Ong, C.1    Smola, A.2    Williamson, R.3
  • 19
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. Rand. Objective criteria for the evaluation of clustering methods. JASA, 66:846-850, 1971.
    • (1971) JASA , vol.66 , pp. 846-850
    • Rand, W.1
  • 24
    • 84878028355 scopus 로고    scopus 로고
    • Boosting kernel models for regression
    • P. Sun and X. Yao. Boosting kernel models for regression. In ICDM, 2006.
    • (2006) ICDM
    • Sun, P.1    Yao, X.2
  • 25
    • 33144470194 scopus 로고    scopus 로고
    • Efficient hyperkernel learning using second-order cone programming
    • I. Tsang and J. Kwok. Efficient hyperkernel learning using second-order cone programming. IEEE Transactions on Neural Networks, 17(1):48-58, 2006.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.1 , pp. 48-58
    • Tsang, I.1    Kwok, J.2
  • 26
    • 84864041449 scopus 로고    scopus 로고
    • Generalized maximum margin clustering and unsupervised kernel learning
    • H. Valizadegan and R. Jin. Generalized maximum margin clustering and unsupervised kernel learning. In NIPS, 2007.
    • (2007) NIPS
    • Valizadegan, H.1    Jin, R.2
  • 28
    • 56449089515 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised multi-class support vector machines
    • L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support vector machines. In AAAI, 2005.
    • (2005) AAAI
    • Xu, L.1    Schuurmans, D.2
  • 29
    • 36849008168 scopus 로고    scopus 로고
    • Learning the kernel matrix in discriminant analysis via quadratically constrained quadratic programming
    • J. Ye, S. Ji, and J. Chen. Learning the kernel matrix in discriminant analysis via quadratically constrained quadratic programming. In SIGKDD, 2007.
    • (2007) SIGKDD
    • Ye, J.1    Ji, S.2    Chen, J.3
  • 30
    • 56449109295 scopus 로고    scopus 로고
    • Maximum margin clustering made practical
    • K. Zhang, I. W. Tsang, and J. T. Kwok. Maximum margin clustering made practical. In ICML, 2007.
    • (2007) ICML
    • Zhang, K.1    Tsang, I.W.2    Kwok, J.T.3
  • 31
    • 52649138409 scopus 로고    scopus 로고
    • B. Zhao, F. Wang, and C. Zhang. Efficient maximum margin clustering via cutting plane algorithm. In SDM, 2008.
    • B. Zhao, F. Wang, and C. Zhang. Efficient maximum margin clustering via cutting plane algorithm. In SDM, 2008.
  • 32
    • 56449122823 scopus 로고    scopus 로고
    • Efficient multiclass maximum margin clustering
    • B. Zhao, F. Wang, and C. Zhang. Efficient multiclass maximum margin clustering. In ICML, 2008.
    • (2008) ICML
    • Zhao, B.1    Wang, F.2    Zhang, C.3
  • 33
    • 77956540615 scopus 로고    scopus 로고
    • Multiclass multiple kernel learning
    • A. Zien and C. Ong. Multiclass multiple kernel learning. In ICML, 2007.
    • (2007) ICML
    • Zien, A.1    Ong, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.