-
1
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In ICML, 2004.
-
(2004)
ICML
-
-
Bach, F.1
Lanckriet, G.2
Jordan, M.3
-
2
-
-
84899006163
-
On the complexity of learning the kernel matrix
-
O. Bousquet and D. Herrmann. On the complexity of learning the kernel matrix. In NIPS, 2003.
-
(2003)
NIPS
-
-
Bousquet, O.1
Herrmann, D.2
-
5
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46:131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
6
-
-
51949086172
-
Semi-supervised classi cation by low density separation
-
O. Chapelle and A. Zien. Semi-supervised classi cation by low density separation. In AISTATS, 2005.
-
(2005)
AISTATS
-
-
Chapelle, O.1
Zien, A.2
-
7
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. JMLR, 2:265-292, 2001.
-
(2001)
JMLR
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
8
-
-
78149301227
-
A min-max cut algorithm for graph partitioning and data mining
-
C. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm for graph partitioning and data mining. In ICDM, pages 107-114, 2001.
-
(2001)
ICDM
, pp. 107-114
-
-
Ding, C.1
He, X.2
Zha, H.3
Gu, M.4
Simon, H.D.5
-
10
-
-
56449124689
-
Localized multiple kernel learning
-
M. Gonen and E. Alpaydin. Localized multiple kernel learning. In ICML, 2008.
-
(2008)
ICML
-
-
Gonen, M.1
Alpaydin, E.2
-
11
-
-
33749563073
-
Training linear SVMs in linear time
-
T. Joachims. Training linear SVMs in linear time. In SIGKDD, 2006.
-
(2006)
SIGKDD
-
-
Joachims, T.1
-
13
-
-
8844263749
-
A statistical framework for genomic data fusion
-
G. Lanckriet, T. De Bie, N. Cristianini, M. Jordan, and W. Noble. A statistical framework for genomic data fusion. Bioinfomatics, 20(16):2626-2635, 2004.
-
(2004)
Bioinfomatics
, vol.20
, Issue.16
, pp. 2626-2635
-
-
Lanckriet, G.1
De Bie, T.2
Cristianini, N.3
Jordan, M.4
Noble, W.5
-
14
-
-
8844278523
-
Learning the kernel matrix with semide nite programming
-
G. Lanckriet, N. Cristianini, L. Ghaoui, P. Bartlett, and M. Jordan. Learning the kernel matrix with semide nite programming. JMLR, 5:27-72, 2004.
-
(2004)
JMLR
, vol.5
, pp. 27-72
-
-
Lanckriet, G.1
Cristianini, N.2
Ghaoui, L.3
Bartlett, P.4
Jordan, M.5
-
15
-
-
0041940559
-
Applications of second-order cone programming
-
M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone programming. Linear Algebra Appl., 284:193-228, 1998.
-
(1998)
Linear Algebra Appl
, vol.284
, pp. 193-228
-
-
Lobo, M.1
Vandenberghe, L.2
Boyd, S.3
Lebret, H.4
-
17
-
-
21844468979
-
Learning the kernel with hyperkernels
-
C. Ong, A. Smola, and R. Williamson. Learning the kernel with hyperkernels. JMLR, 6:1043-1071, 2005.
-
(2005)
JMLR
, vol.6
, pp. 1043-1071
-
-
Ong, C.1
Smola, A.2
Williamson, R.3
-
19
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
W. Rand. Objective criteria for the evaluation of clustering methods. JASA, 66:846-850, 1971.
-
(1971)
JASA
, vol.66
, pp. 846-850
-
-
Rand, W.1
-
23
-
-
33745776113
-
Large scale multiple kernel learning
-
S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning. JMLR, 7:1531-1565, 2006.
-
(2006)
JMLR
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Rätsch, G.2
Schäfer, C.3
Schölkopf, B.4
-
24
-
-
84878028355
-
Boosting kernel models for regression
-
P. Sun and X. Yao. Boosting kernel models for regression. In ICDM, 2006.
-
(2006)
ICDM
-
-
Sun, P.1
Yao, X.2
-
25
-
-
33144470194
-
Efficient hyperkernel learning using second-order cone programming
-
I. Tsang and J. Kwok. Efficient hyperkernel learning using second-order cone programming. IEEE Transactions on Neural Networks, 17(1):48-58, 2006.
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.1
, pp. 48-58
-
-
Tsang, I.1
Kwok, J.2
-
26
-
-
84864041449
-
Generalized maximum margin clustering and unsupervised kernel learning
-
H. Valizadegan and R. Jin. Generalized maximum margin clustering and unsupervised kernel learning. In NIPS, 2007.
-
(2007)
NIPS
-
-
Valizadegan, H.1
Jin, R.2
-
28
-
-
56449089515
-
Unsupervised and semi-supervised multi-class support vector machines
-
L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support vector machines. In AAAI, 2005.
-
(2005)
AAAI
-
-
Xu, L.1
Schuurmans, D.2
-
29
-
-
36849008168
-
Learning the kernel matrix in discriminant analysis via quadratically constrained quadratic programming
-
J. Ye, S. Ji, and J. Chen. Learning the kernel matrix in discriminant analysis via quadratically constrained quadratic programming. In SIGKDD, 2007.
-
(2007)
SIGKDD
-
-
Ye, J.1
Ji, S.2
Chen, J.3
-
30
-
-
56449109295
-
Maximum margin clustering made practical
-
K. Zhang, I. W. Tsang, and J. T. Kwok. Maximum margin clustering made practical. In ICML, 2007.
-
(2007)
ICML
-
-
Zhang, K.1
Tsang, I.W.2
Kwok, J.T.3
-
31
-
-
52649138409
-
-
B. Zhao, F. Wang, and C. Zhang. Efficient maximum margin clustering via cutting plane algorithm. In SDM, 2008.
-
B. Zhao, F. Wang, and C. Zhang. Efficient maximum margin clustering via cutting plane algorithm. In SDM, 2008.
-
-
-
-
32
-
-
56449122823
-
Efficient multiclass maximum margin clustering
-
B. Zhao, F. Wang, and C. Zhang. Efficient multiclass maximum margin clustering. In ICML, 2008.
-
(2008)
ICML
-
-
Zhao, B.1
Wang, F.2
Zhang, C.3
-
33
-
-
77956540615
-
Multiclass multiple kernel learning
-
A. Zien and C. Ong. Multiclass multiple kernel learning. In ICML, 2007.
-
(2007)
ICML
-
-
Zien, A.1
Ong, C.2
|