메뉴 건너뛰기




Volumn , Issue , 2014, Pages 207-223

Learning mixtures of arbitrary distributions over large discrete domains

Author keywords

Convex geometry; Linear programming; Mixture learning; Moment methods; Randomized algorithms; Spectral techniques; Topic models

Indexed keywords

COMPUTER SCIENCE; INFORMATION THEORY; LEARNING ALGORITHMS; LINEAR PROGRAMMING; METHOD OF MOMENTS; OPTIMIZATION;

EID: 84893305245     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2554797.2554818     Document Type: Conference Paper
Times cited : (30)

References (43)
  • 1
    • 26944433782 scopus 로고    scopus 로고
    • On spectral learning of mixtures of distributions
    • D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In Proc. 18th COLT, pages 458-469, 2005.
    • (2005) Proc. 18th COLT , pp. 458-469
    • Achlioptas, D.1    McSherry, F.2
  • 2
    • 84893274830 scopus 로고    scopus 로고
    • Two SVDs suffice: Spectral decompositions for probabilistic topic modeling and latent dirichlet allocation
    • http://arxiv.org/abs/1204.6703
    • A. Anandkumar, D.P. Foster, D. Hsu, S.M. Kakade, and Y.-K. Liu. Two SVDs suffice: Spectral decompositions for probabilistic topic modeling and latent Dirichlet allocation. CoRR, abs/1204.6703, 2012. http://arxiv.org/abs/1204.6703.
    • (2012) CoRR, Abs/1204.6703
    • Anandkumar, A.1    Foster, D.P.2    Hsu, D.3    Kakade, S.M.4    Liu, Y.-K.5
  • 3
    • 84871953727 scopus 로고    scopus 로고
    • A method of moments for mixture models and hidden Markov models
    • http://arxiv.org/abs/1203.0683
    • A. Anandkumar, D. Hsu, and S.M. Kakade. A method of moments for mixture models and hidden Markov models. In Proc. 25th COLT, pages 33.1-33.34, 2012. http://arxiv.org/abs/1203.0683.
    • (2012) Proc. 25th COLT , pp. 331-3334
    • Anandkumar, A.1    Hsu, D.2    Kakade, S.M.3
  • 4
    • 84871960604 scopus 로고    scopus 로고
    • Learning topic models - Going beyond SVD
    • S. Arora, R. Ge, and A. Moitra. Learning topic models - going beyond SVD. In Proc. 53rd FOCS, pages 1-10, 2012.
    • (2012) Proc. 53rd FOCS , pp. 1-10
    • Arora, S.1    Ge, R.2    Moitra, A.3
  • 5
    • 14544275956 scopus 로고    scopus 로고
    • Learning mixtures of separated nonspherical Gaussians
    • S. Arora and R. Kannan. Learning mixtures of separated nonspherical Gaussians. Ann. Appl. Prob., 15: 69-92, 2005.
    • (2005) Ann. Appl. Prob. , vol.15 , pp. 69-92
    • Arora, S.1    Kannan, R.2
  • 7
    • 0034837020 scopus 로고    scopus 로고
    • Sampling algorithms: Lower bounds and applications
    • Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Sampling algorithms: lower bounds and applications. In Proc. 33rd STOC, pages 266-275, 2001.
    • (2001) Proc. 33rd STOC , pp. 266-275
    • Bar-Yossef, Z.1    Kumar, R.2    Sivakumar, D.3
  • 9
    • 9444245364 scopus 로고    scopus 로고
    • Inferring mixtures of Markov chains
    • T. Batu, S. Guha, and S. Kannan. Inferring mixtures of Markov chains. In Proc. 17th COLT, pages 186-199, 2004.
    • (2004) Proc. 17th COLT , pp. 186-199
    • Batu, T.1    Guha, S.2    Kannan, S.3
  • 10
    • 78751519918 scopus 로고    scopus 로고
    • Polynomial learning of distribution families
    • M. Belkin and K. Sinha. Polynomial learning of distribution families. In Proc. 51st FOCS, pages 103-112, 2010.
    • (2010) Proc. 51st FOCS , pp. 103-112
    • Belkin, M.1    Sinha, K.2
  • 11
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic topic models
    • D.M. Blei. Probabilistic topic models. Commun. ACM, 55(4): 77-84, 2012.
    • (2012) Commun. ACM , vol.55 , Issue.4 , pp. 77-84
    • Blei, D.M.1
  • 13
    • 57949105623 scopus 로고    scopus 로고
    • Isotropic PCA and affine-invariant clustering
    • S.C. Brubaker and S. Vempala. Isotropic PCA and affine-invariant clustering. In Proc. 49th FOCS, pages 551-560, 2008.
    • (2008) Proc. 49th FOCS , pp. 551-560
    • Brubaker, S.C.1    Vempala, S.2
  • 14
    • 84919924184 scopus 로고    scopus 로고
    • A rigorous analysis of population stratification with limited data
    • K. Chaudhuri, E. Halperin, S. Rao, and S. Zhou. A rigorous analysis of population stratification with limited data. In Proc. 18th SODA, pages 1046-1055, 2007.
    • (2007) Proc. 18th SODA , pp. 1046-1055
    • Chaudhuri, K.1    Halperin, E.2    Rao, S.3    Zhou, S.4
  • 15
    • 76649116991 scopus 로고    scopus 로고
    • Beyond Gaussians: Spectral methods for learning mixtures of heavy-tailed distributions
    • K. Chaudhuri and S. Rao. Beyond Gaussians: Spectral methods for learning mixtures of heavy-tailed distributions. In Proc. 21st COLT, pages 21-32, 2008.
    • (2008) Proc. 21st COLT , pp. 21-32
    • Chaudhuri, K.1    Rao, S.2
  • 16
    • 84898062517 scopus 로고    scopus 로고
    • Learning mixtures of product distributions using correlations and independence
    • K. Chaudhuri and S. Rao. Learning mixtures of product distributions using correlations and independence. In Proc. 21st COLT, pages 9-20, 2008.
    • (2008) Proc. 21st COLT , pp. 9-20
    • Chaudhuri, K.1    Rao, S.2
  • 17
    • 0004454684 scopus 로고
    • Polynomially bounded ellipsoid algorithms for convex quadratic programming
    • O. Mangasarian, R. Meyer, and S. Robinson, editors Academic Press, Orlando, Florida
    • S. Chung and K. Murty. Polynomially bounded ellipsoid algorithms for convex quadratic programming. In O. Mangasarian, R. Meyer, and S. Robinson, editors, Nonlinear Programming, Volume 4, pages 439-485. Academic Press, Orlando, Florida, 1981.
    • (1981) Nonlinear Programming , vol.4 , pp. 439-485
    • Chung, S.1    Murty, K.2
  • 18
    • 0036253383 scopus 로고    scopus 로고
    • Evolutionary trees can be learned in polynomial time in the two state general Markov model
    • M. Cryan, L. Goldberg, and P. Goldberg. Evolutionary trees can be learned in polynomial time in the two state general Markov model. SICOMP, 31(2): 375-397, 2002.
    • (2002) SICOMP , vol.31 , Issue.2 , pp. 375-397
    • Cryan, M.1    Goldberg, L.2    Goldberg, P.3
  • 20
    • 0033336275 scopus 로고    scopus 로고
    • Learning mixtures of Gaussians
    • S. Dasgupta. Learning mixtures of Gaussians. In Proc. 40th FOCS, pages 634-644, 1999.
    • (1999) Proc. 40th FOCS , pp. 634-644
    • Dasgupta, S.1
  • 21
    • 33847128516 scopus 로고    scopus 로고
    • A probabilistic analysis of EM for mixtures of separated, spherical Gaussians
    • S. Dasgupta and L.J. Schulman. A probabilistic analysis of EM for mixtures of separated, spherical Gaussians. Journal of Machine Learning Research, 8: 203-226, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 203-226
    • Dasgupta, S.1    Schulman, L.J.2
  • 24
    • 55249083012 scopus 로고    scopus 로고
    • PAC learning mixtures of axis-aligned Gaussians with no separation assumption
    • J. Feldman, R. O'Donnell, and R.A. Servedio. PAC learning mixtures of axis-aligned Gaussians with no separation assumption. In Proc. 19th COLT, pages 20-34, 2006.
    • (2006) Proc. 19th COLT , pp. 20-34
    • Feldman, J.1    O'Donnell, R.2    Servedio, R.A.3
  • 25
    • 55249099345 scopus 로고    scopus 로고
    • Learning mixtures of product distributions over discrete domains
    • J. Feldman, R. O'Donnell, and R.A. Servedio. Learning mixtures of product distributions over discrete domains. SIAM J. Comput., 37(5): 1536-1564, 2008.
    • (2008) SIAM J. Comput. , vol.37 , Issue.5 , pp. 1536-1564
    • Feldman, J.1    O'Donnell, R.2    Servedio, R.A.3
  • 26
    • 33746098764 scopus 로고    scopus 로고
    • Estimating a mixture of two product distributions
    • Y. Freund and Y. Mansour. Estimating a mixture of two product distributions. In Proc. 12th COLT, pages 183-192, 1999.
    • (1999) Proc. 12th COLT , pp. 183-192
    • Freund, Y.1    Mansour, Y.2
  • 28
    • 0001509519 scopus 로고    scopus 로고
    • Probabilistic latent semantic analysis
    • T. Hofmann. Probabilistic latent semantic analysis. In Proc. 15th UAI, pages 289-296, 1999.
    • (1999) Proc. 15th UAI , pp. 289-296
    • Hofmann, T.1
  • 29
    • 84862271600 scopus 로고    scopus 로고
    • Latent class models for collaborative filtering
    • T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In Proc. IJCAI, pages 688-693, 1999.
    • (1999) Proc. IJCAI , pp. 688-693
    • Hofmann, T.1    Puzicha, J.2
  • 31
    • 77954731171 scopus 로고    scopus 로고
    • Efficiently learning mixtures of two Gaussians
    • June
    • A.T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two Gaussians. In Proc. 42nd STOC, pages 553-562, June 2010.
    • (2010) Proc. 42nd STOC , pp. 553-562
    • Kalai, A.T.1    Moitra, A.2    Valiant, G.3
  • 32
    • 55249121402 scopus 로고    scopus 로고
    • The spectral method for general mixture models
    • R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture models. SIAM J. Computing, 38(3): 1141-1156, 2008.
    • (2008) SIAM J. Computing , vol.38 , Issue.3 , pp. 1141-1156
    • Kannan, R.1    Salmasian, H.2    Vempala, S.3
  • 34
    • 35448983933 scopus 로고    scopus 로고
    • Using mixture models for collaborative filtering
    • J. Kleinberg and M. Sandler. Using mixture models for collaborative filtering. J. Comput. Syst. Sci., 74: 49-69, 2008.
    • (2008) J. Comput. Syst. Sci. , vol.74 , pp. 49-69
    • Kleinberg, J.1    Sandler, M.2
  • 35
    • 0035186726 scopus 로고    scopus 로고
    • Spectral partitioning of random graphs
    • October
    • F. McSherry. Spectral partitioning of random graphs. In Proc. 42nd FOCS, pages 529-537, October 2001.
    • (2001) Proc. 42nd FOCS , pp. 529-537
    • McSherry, F.1
  • 36
    • 78751527010 scopus 로고    scopus 로고
    • Settling the polynomial learnability of mixtures of Gaussians
    • A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of Gaussians. In Proc. 51st FOCS, pages 93-102, 2010.
    • (2010) Proc. 51st FOCS , pp. 93-102
    • Moitra, A.1    Valiant, G.2
  • 37
    • 34848926262 scopus 로고    scopus 로고
    • Learning nonsingular phylogenies and hidden Markov models
    • E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden Markov models. In Prof. 46th STOC, pages 366-375, 2005.
    • (2005) Prof. 46th STOC , pp. 366-375
    • Mossel, E.1    Roch, S.2
  • 38
    • 0030168306 scopus 로고    scopus 로고
    • Optimal and nearly optimal algorithms for approximating polynomial zeros
    • V. Y. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros. Computers & Mathematics with Applications, 31(12): 97-138, 1996.
    • (1996) Computers & Mathematics with Applications , vol.31 , Issue.12 , pp. 97-138
    • Pan, V.Y.1
  • 41
    • 3042606899 scopus 로고    scopus 로고
    • A spectral algorithm for learning mixtures of distributions
    • S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. J. Comput. Syst. Sci., 68(4): 841-860, 2004.
    • (2004) J. Comput. Syst. Sci. , vol.68 , Issue.4 , pp. 841-860
    • Vempala, S.1    Wang, G.2
  • 43
    • 34848901104 scopus 로고    scopus 로고
    • Spectral norm of random matrices
    • V. H. Vu. Spectral norm of random matrices. In Proc. 37th STOC, pages 423-430, 2005.
    • (2005) Proc. 37th STOC , pp. 423-430
    • Vu, V.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.