메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1531-1542

Tripartite graph clustering for dynamic sentiment analysis on social media

Author keywords

[No Author keywords available]

Indexed keywords

SOCIAL NETWORKING (ONLINE);

EID: 84904307698     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2588555.2593682     Document Type: Conference Paper
Times cited : (55)

References (37)
  • 1
    • 84862609231 scopus 로고    scopus 로고
    • Computing a nonnegative matrix factorization-provably
    • ACM
    • S. Arora, R. Ge, R. Kannan, and A. Moitra. Computing a nonnegative matrix factorization-provably. In STOC Conference, pages 145-162. ACM, 2012.
    • (2012) STOC Conference , pp. 145-162
    • Arora, S.1    Ge, R.2    Kannan, R.3    Moitra, A.4
  • 2
    • 80053418268 scopus 로고    scopus 로고
    • Robust sentiment detection on twitter from biased and noisy data
    • Association for Computational Linguistics
    • L. Barbosa and J. Feng. Robust sentiment detection on twitter from biased and noisy data. In COLING Conference, pages 36-44. Association for Computational Linguistics, 2010.
    • (2010) COLING Conference , pp. 36-44
    • Barbosa, L.1    Feng, J.2
  • 3
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized nonnegative matrix factorization for data representation
    • D. Cai, X. He, J. Han, and T. S. Huang. Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell., 33(8):1548-1560, 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.S.4
  • 4
    • 38149095674 scopus 로고    scopus 로고
    • Detect and track latent factors with online nonnegative matrix factorization
    • Morgan Kaufmann Publishers Inc
    • B. Cao, D. Shen, J.-T. Sun, X. Wang, Q. Yang, and Z. Chen. Detect and track latent factors with online nonnegative matrix factorization. In IJCAI Conference, pages 2689-2694. Morgan Kaufmann Publishers Inc., 2007.
    • (2007) IJCAI Conference , pp. 2689-2694
    • Cao, B.1    Shen, D.2    Sun, J.-T.3    Wang, X.4    Yang, Q.5    Chen, Z.6
  • 6
    • 80053291743 scopus 로고    scopus 로고
    • Enhanced sentiment learning using twitter hashtags and smileys
    • Stroudsburg, PA, USA, Association for Computational Linguistics
    • D. Davidov, O. Tsur, and A. Rappoport. Enhanced sentiment learning using twitter hashtags and smileys. In COLING Conference, pages 241-249, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.
    • (2010) COLING Conference , pp. 241-249
    • Davidov, D.1    Tsur, O.2    Rappoport, A.3
  • 7
    • 84960492237 scopus 로고    scopus 로고
    • Exploring and inferring user-user pseudo-friendship for sentiment analysis with heterogeneous networks
    • SIAM
    • H. Deng, J. Han, H. Ji, H. Li, Y. Lu, and H. Wang. Exploring and inferring user-user pseudo-friendship for sentiment analysis with heterogeneous networks. In SDM, pages 378-386. SIAM, 2013.
    • (2013) SDM , pp. 378-386
    • Deng, H.1    Han, J.2    Ji, H.3    Li, H.4    Lu, Y.5    Wang, H.6
  • 8
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: An analytical and interpretive tool in computational biology
    • K. Devarajan. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol, 4(7):e1000029, 2008.
    • (2008) PLoS Comput Biol , vol.4 , Issue.7
    • Devarajan, K.1
  • 9
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix t-factorizations for clustering
    • ACM
    • C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations for clustering. In SIGKDD Conference, pages 126-135. ACM, 2006.
    • (2006) SIGKDD Conference , pp. 126-135
    • Ding, C.1    Li, T.2    Peng, W.3    Park, H.4
  • 10
    • 32344447271 scopus 로고    scopus 로고
    • Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering
    • ACM
    • B. Gao, T.-Y. Liu, X. Zheng, Q.-S. Cheng, and W.-Y. Ma. Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In SIGKDD Conference, pages 41-50. ACM, 2005.
    • (2005) SIGKDD Conference , pp. 41-50
    • Gao, B.1    Liu, T.-Y.2    Zheng, X.3    Cheng, Q.-S.4    Ma, W.-Y.5
  • 11
    • 79953762206 scopus 로고    scopus 로고
    • Twitter sentiment classification using distant supervision
    • A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant supervision. Technical report, pages 1-6, 2009.
    • (2009) Technical Report , pp. 1-6
    • Go, A.1    Bhayani, R.2    Huang, L.3
  • 12
    • 47749130308 scopus 로고    scopus 로고
    • Seeing stars when there aren't many stars: Graph-based semi-supervised learning for sentiment categorization
    • Association for Computational Linguistics
    • A. B. Goldberg and X. Zhu. Seeing stars when there aren't many stars: Graph-based semi-supervised learning for sentiment categorization. In TextGraphs WorkShop, pages 45-52. Association for Computational Linguistics, 2006.
    • (2006) TextGraphs WorkShop , pp. 45-52
    • Goldberg, A.B.1    Zhu, X.2
  • 13
    • 70350697580 scopus 로고    scopus 로고
    • Co-clustering on manifolds
    • ACM
    • Q. Gu and J. Zhou. Co-clustering on manifolds. In SIGKDD Conference, pages 359-368. ACM, 2009.
    • (2009) SIGKDD Conference , pp. 359-368
    • Gu, Q.1    Zhou, J.2
  • 14
    • 85121752948 scopus 로고    scopus 로고
    • Predicting the semantic orientation of adjectives
    • Morristown, NJ, USA, Association for Computational Linguistics
    • V. Hatzivassiloglou and K. R. McKeown. Predicting the semantic orientation of adjectives. In COLING/EACL Conference, pages 174-181, Morristown, NJ, USA, 1997. Association for Computational Linguistics.
    • (1997) COLING/EACL Conference , pp. 174-181
    • Hatzivassiloglou, V.1    McKeown, K.R.2
  • 15
    • 84893144737 scopus 로고    scopus 로고
    • Unsupervised sentiment analysis with emotional signals
    • ACM
    • X. Hu, J. Tang, H. Gao, and H. Liu. Unsupervised sentiment analysis with emotional signals. In World Wide Web Conference. ACM, 2013.
    • (2013) World Wide Web Conference
    • Hu, X.1    Tang, J.2    Gao, H.3    Liu, H.4
  • 16
    • 84863012243 scopus 로고    scopus 로고
    • Fast nonnegative matrix factorization: An active-set-like method and comparisons
    • J. Kim and H. Park. Fast nonnegative matrix factorization: An active-set-like method and comparisons. SIAM J. Sci. Comput., 33(6):3261-3281, 2011.
    • (2011) SIAM J. Sci. Comput , vol.33 , Issue.6 , pp. 3261-3281
    • Kim, J.1    Park, H.2
  • 19
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • MIT Press
    • D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS Conference, pages 556-562. MIT Press, 2000.
    • (2000) NIPS Conference , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 20
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C.-J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural Comput., 19(10):2756-2779, 2007.
    • (2007) Neural Comput , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 21
    • 84862684679 scopus 로고    scopus 로고
    • Large-scale machine learning at twitter
    • ACM
    • J. Lin and A. Kolcz. Large-scale machine learning at twitter. In SIGMOD Conference, pages 793-804. ACM, 2012.
    • (2012) SIGMOD Conference , pp. 793-804
    • Lin, J.1    Kolcz, A.2
  • 23
    • 70350645448 scopus 로고    scopus 로고
    • Sentiment analysis of blogs by combining lexical knowledge with text classification
    • New York, NY, USA, ACM
    • P. Melville, W. Gryc, and R. D. Lawrence. Sentiment analysis of blogs by combining lexical knowledge with text classification. In SIGKDD Conference, pages 1275-1284, New York, NY, USA, 2009. ACM.
    • (2009) SIGKDD Conference , pp. 1275-1284
    • Melville, P.1    Gryc, W.2    Lawrence, R.D.3
  • 24
    • 84904365359 scopus 로고    scopus 로고
    • Predicting collective sentiment dynamics from time-series social media
    • ACM
    • L. T. Nguyen, P. Wu, W. Chan, W. Peng, and Y. Zhang. Predicting collective sentiment dynamics from time-series social media. In WSDM Workshop, pages 6:1-6:8. ACM, 2012.
    • (2012) WSDM Workshop , pp. 61-68
    • Nguyen, L.T.1    Wu, P.2    Chan, W.3    Peng, W.4    Zhang, Y.5
  • 25
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up?: Sentiment classification using machine learning techniques
    • Stroudsburg, PA, USA, Association for Computational Linguistics
    • B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification using machine learning techniques. In EMNLP Conference, pages 79-86, Stroudsburg, PA, USA, 2002. Association for Computational Linguistics.
    • (2002) EMNLP Conference , pp. 79-86
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 26
    • 84858043041 scopus 로고    scopus 로고
    • Learning evolving and emerging topics in social media: A dynamic nmf approach with temporal regularization
    • ACM
    • A. Saha and V. Sindhwani. Learning evolving and emerging topics in social media: a dynamic nmf approach with temporal regularization. In WSDM Conference, pages 693-702. ACM, 2012.
    • (2012) WSDM Conference , pp. 693-702
    • Saha, A.1    Sindhwani, V.2
  • 28
    • 84912557332 scopus 로고    scopus 로고
    • Twitter polarity classification with label propagation over lexical links and the follower graph
    • Association for Computational Linguistics
    • M. Speriosu, N. Sudan, S. Upadhyay, and J. Baldridge. Twitter polarity classification with label propagation over lexical links and the follower graph. In Workshop on Unsupervised Learning in NLP, pages 53-63. Association for Computational Linguistics, 2011.
    • (2011) Workshop on Unsupervised Learning in NLP , pp. 53-63
    • Speriosu, M.1    Sudan, N.2    Upadhyay, S.3    Baldridge, J.4
  • 29
    • 80052663073 scopus 로고    scopus 로고
    • User-level sentiment analysis incorporating social networks
    • New York, NY, USA, ACM
    • C. Tan, L. Lee, J. Tang, L. Jiang, M. Zhou, and P. Li. User-level sentiment analysis incorporating social networks. In SIGKDD Conference, pages 1397-1405, New York, NY, USA, 2011. ACM.
    • (2011) SIGKDD Conference , pp. 1397-1405
    • Tan, C.1    Lee, L.2    Tang, J.3    Jiang, L.4    Zhou, M.5    Li, P.6
  • 30
    • 84857336717 scopus 로고    scopus 로고
    • Efficient document clustering via online nonnegative matrix factorizations
    • F. Wang, P. Li, and A. C. Knig. Efficient document clustering via online nonnegative matrix factorizations. In SDM Conference, pages 908-919, 2011.
    • (2011) SDM Conference , pp. 908-919
    • Wang, F.1    Li, P.2    Knig, A.C.3
  • 31
    • 83055179484 scopus 로고    scopus 로고
    • Topic sentiment analysis in twitter: A graph-based hashtag sentiment classification approach
    • New York, NY, USA, ACM
    • X. Wang, F. Wei, X. Liu, M. Zhou, and M. Zhang. Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In CIKM Conference, pages 1031-1040, New York, NY, USA, 2011. ACM.
    • (2011) CIKM Conference , pp. 1031-1040
    • Wang, X.1    Wei, F.2    Liu, X.3    Zhou, M.4    Zhang, M.5
  • 32
    • 80053247760 scopus 로고    scopus 로고
    • Recognizing contextual polarity in phrase-level sentiment analysis
    • Association for Computational Linguistics
    • T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing contextual polarity in phrase-level sentiment analysis. In HLT/EMNLP Conference, pages 347-354. Association for Computational Linguistics, 2005.
    • (2005) HLT/EMNLP Conference , pp. 347-354
    • Wilson, T.1    Wiebe, J.2    Hoffmann, P.3
  • 33
    • 84862690118 scopus 로고    scopus 로고
    • A model-based approach to attributed graph clustering
    • Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based approach to attributed graph clustering. In SIGMOD Conference, pages 505-516, 2012.
    • (2012) SIGMOD Conference , pp. 505-516
    • Xu, Z.1    Ke, Y.2    Wang, Y.3    Cheng, H.4    Cheng, J.5
  • 34
    • 84908165238 scopus 로고    scopus 로고
    • Gbagc: A general bayesian framework for attributed graph clustering
    • To appear in
    • Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. Gbagc: A general bayesian framework for attributed graph clustering. To appear in TKDD, 2014.
    • (2014) TKDD
    • Xu, Z.1    Ke, Y.2    Wang, Y.3    Cheng, H.4    Cheng, J.5
  • 36
    • 84893232817 scopus 로고    scopus 로고
    • Graph-based informative-sentence selection for opinion summarization
    • L. Zhu, S. Gao, S. J. Pan, H. Li, D. Deng, and C. Shahabi. Graph-based informative-sentence selection for opinion summarization. In ASONAM Conference, pages 408-412, 2013.
    • (2013) ASONAM Conference , pp. 408-412
    • Zhu, L.1    Gao, S.2    Pan, S.J.3    Li, H.4    Deng, D.5    Shahabi, C.6
  • 37
    • 79551714932 scopus 로고    scopus 로고
    • Exploiting associations between word clusters and document classes for cross-domain text categorization
    • F. Zhuang, P. Luo, H. Xiong, Q. He, Y. Xiong, and Z. Shi. Exploiting associations between word clusters and document classes for cross-domain text categorization. Stat. Anal. Data Min., 4(1):100-114, 2011.
    • (2011) Stat. Anal. Data Min , vol.4 , Issue.1 , pp. 100-114
    • Zhuang, F.1    Luo, P.2    Xiong, H.3    He, Q.4    Xiong, Y.5    Shi, Z.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.