메뉴 건너뛰기




Volumn , Issue , 2012, Pages 793-804

Large-scale machine learning at Twitter

Author keywords

ensembles; logistic regression; online learning; stochastic gradient descent

Indexed keywords

DATA SAMPLING; ENSEMBLE METHODS; ENSEMBLES; FEATURE GENERATION; LARGE AMOUNTS OF DATA; LOGISTIC REGRESSIONS; ONLINE LEARNING; PREDICTIVE ANALYTICS; PRODUCTION ENVIRONMENTS; SEAMLESS INTEGRATION; STOCHASTIC GRADIENT DESCENT; STORAGE FUNCTION; SUPERVISED CLASSIFICATION; USER DEFINED FUNCTIONS;

EID: 84862684679     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2213836.2213958     Document Type: Conference Paper
Times cited : (153)

References (49)
  • 1
    • 79957809015 scopus 로고    scopus 로고
    • HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for analytical workloads
    • A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin. HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for analytical workloads. VLDB, 2009.
    • (2009) VLDB
    • Abouzeid, A.1    Bajda-Pawlikowski, K.2    Abadi, D.3    Silberschatz, A.4    Rasin, A.5
  • 3
    • 79959994432 scopus 로고    scopus 로고
    • Efficient processing of data warehousing queries in a split execution environment
    • K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and E. Paulson. Efficient processing of data warehousing queries in a split execution environment. SIGMOD, 2011.
    • (2011) SIGMOD
    • Bajda-Pawlikowski, K.1    Abadi, D.2    Silberschatz, A.3    Paulson, E.4
  • 4
    • 0345570094 scopus 로고    scopus 로고
    • Scaling to very very large corpora for natural language disambiguation
    • M. Banko and E. Brill. Scaling to very very large corpora for natural language disambiguation. ACL, 2001.
    • (2001) ACL
    • Banko, M.1    Brill, E.2
  • 5
    • 80052691167 scopus 로고    scopus 로고
    • High-precision phrase-based document classification on a modern scale
    • R. Bekkerman and M. Gavish. High-precision phrase-based document classification on a modern scale. KDD, 2011.
    • (2011) KDD
    • Bekkerman, R.1    Gavish, M.2
  • 7
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • L. Bottou. Large-scale machine learning with stochastic gradient descent. COMPSTAT, 2010.
    • (2010) COMPSTAT
    • Bottou, L.1
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman. Arcing classifiers. Annals of Statistics, 26(3):801-849, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 15
    • 85030321143 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 16
    • 84957855798 scopus 로고    scopus 로고
    • Fast, easy, and cheap: Construction of statistical machine translation models with MapReduce
    • C. Dyer, A. Cordova, A. Mont, and J. Lin. Fast, easy, and cheap: Construction of statistical machine translation models with MapReduce. StatMT Workshop, 2008.
    • StatMT Workshop, 2008
    • Dyer, C.1    Cordova, A.2    Mont, A.3    Lin, J.4
  • 17
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. IJCAI, 1993.
    • (1993) IJCAI
    • Fayyad, U.1    Irani, K.2
  • 24
    • 34247882698 scopus 로고    scopus 로고
    • Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search
    • T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search. ACM TOIS, 25(2):1-27, 2007.
    • (2007) ACM TOIS , vol.25 , Issue.2 , pp. 1-27
    • Joachims, T.1    Granka, L.2    Pan, B.3    Hembrooke, H.4    Radlinski, F.5    Gay, G.6
  • 25
    • 85128719106 scopus 로고    scopus 로고
    • Twitter sentiment analysis: The good the bad and the OMG!
    • E. Kouloumpis, T. Wilson, and J. Moore. Twitter sentiment analysis: The good the bad and the OMG! ICWSM, 2011.
    • (2011) ICWSM
    • Kouloumpis, E.1    Wilson, T.2    Moore, J.3
  • 29
    • 79961034447 scopus 로고    scopus 로고
    • Full-text indexing for optimizing selection operations in large-scale data analytics
    • J. Lin, D. Ryaboy, and K. Weil. Full-text indexing for optimizing selection operations in large-scale data analytics. MAPREDUCE Workshop, 2011.
    • MAPREDUCE Workshop, 2011
    • Lin, J.1    Ryaboy, D.2    Weil, K.3
  • 30
    • 79959945877 scopus 로고    scopus 로고
    • Llama: Leveraging columnar storage for scalable join processing in the MapReduce framework
    • Y. Lin, D. Agrawal, C. Chen, B. Ooi, and S. Wu. Llama: Leveraging columnar storage for scalable join processing in the MapReduce framework. SIGMOD, 2011.
    • (2011) SIGMOD
    • Lin, Y.1    Agrawal, D.2    Chen, C.3    Ooi, B.4    Wu, S.5
  • 31
    • 84864232092 scopus 로고    scopus 로고
    • Data infrastructure at LinkedIn
    • LinkedIn
    • LinkedIn. Data infrastructure at LinkedIn. ICDE, 2012.
    • (2012) ICDE
  • 32
    • 80052652249 scopus 로고    scopus 로고
    • Efficient large-scale distributed training of conditional maximum entropy models
    • G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-scale distributed training of conditional maximum entropy models. NIPS, 2009.
    • (2009) NIPS
    • Mann, G.1    McDonald, R.2    Mohri, M.3    Silberman, N.4    Walker, D.5
  • 33
    • 80052650170 scopus 로고    scopus 로고
    • Distributed training strategies for the structured perceptron
    • R. McDonald, K. Hall, and G. Mann. Distributed training strategies for the structured perceptron. HLT, 2010.
    • (2010) HLT
    • McDonald, R.1    Hall, K.2    Mann, G.3
  • 34
    • 79957860992 scopus 로고    scopus 로고
    • Distributed cube materialization on holistic measures
    • A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan. Distributed cube materialization on holistic measures. ICDE, 2011.
    • (2011) ICDE
    • Nandi, A.1    Yu, C.2    Bohannon, P.3    Ramakrishnan, R.4
  • 36
    • 84890614558 scopus 로고    scopus 로고
    • From Tweets to polls: Linking text sentiment to public opinion time series
    • B. O'Connor, R. Balasubramanyan, B. Routledge, and N. Smith. From Tweets to polls: Linking text sentiment to public opinion time series. ICWSM, 2010.
    • (2010) ICWSM
    • O'Connor, B.1    Balasubramanyan, R.2    Routledge, B.3    Smith, N.4
  • 38
    • 85028156346 scopus 로고    scopus 로고
    • Twitter as a corpus for sentiment analysis and opinion mining
    • A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and opinion mining. LREC, 2010.
    • (2010) LREC
    • Pak, A.1    Paroubek, P.2
  • 40
    • 48449095896 scopus 로고    scopus 로고
    • Opinion mining and sentiment analysis
    • B. Pang and L. Lee. Opinion mining and sentiment analysis. FnTIR, 2(1-2):1-135, 2008.
    • (2008) FnTIR , vol.2 , Issue.1-2 , pp. 1-135
    • Pang, B.1    Lee, L.2
  • 43
    • 48849117633 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • Y. Singer and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. ICML, 2007.
    • (2007) ICML
    • Singer, Y.1    Srebro, N.2
  • 44
    • 80052119994 scopus 로고    scopus 로고
    • An architecture for parallel topic models
    • A. Smola and S. Narayanamurthy. An architecture for parallel topic models. VLDB, 2010.
    • (2010) VLDB
    • Smola, A.1    Narayanamurthy, S.2
  • 45
    • 80053360508 scopus 로고    scopus 로고
    • Cheap and fast - But is it good? Evaluating non-expert annotations for natural language tasks
    • R. Snow, B. O'Connor, D. Jurafsky, and A. Ng. Cheap and fast - but is it good? Evaluating non-expert annotations for natural language tasks. EMNLP, 2008.
    • (2008) EMNLP
    • Snow, R.1    O'Connor, B.2    Jurafsky, D.3    Ng, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.