메뉴 건너뛰기




Volumn , Issue , 2014, Pages 449-458

The power of localization for efficiently learning linear separators with noise

Author keywords

Adversarial label noise; Malicious noise; Noise tolerant learning; Passive and active learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; POLYNOMIALS; PROBABILITY DISTRIBUTIONS;

EID: 84904299163     PISSN: 07378017     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2591796.2591839     Document Type: Conference Paper
Times cited : (108)

References (44)
  • 5
    • 84898988307 scopus 로고    scopus 로고
    • Statistical active learning algorithms
    • M.-F. Balcan and V. Feldman. Statistical active learning algorithms. NIPS, 2013.
    • (2013) NIPS
    • Balcan, M.-F.1    Feldman, V.2
  • 6
    • 84898966798 scopus 로고    scopus 로고
    • Robust interactive learning
    • M.-F. Balcan and S. Hanneke. Robust interactive learning. In COLT, 2012.
    • (2012) COLT
    • Balcan, M.-F.1    Hanneke, S.2
  • 7
    • 84860640656 scopus 로고    scopus 로고
    • The true sample complexity of active learning
    • M.-F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. In COLT, 2008.
    • (2008) COLT
    • Balcan, M.-F.1    Hanneke, S.2    Wortman, J.3
  • 8
    • 84937847157 scopus 로고    scopus 로고
    • Active and passive learning of linear separators under log-concave distributions
    • M.-F. Balcan and P. M. Long. Active and passive learning of linear separators under log-concave distributions. In Conference on Learning Theory, 2013.
    • (2013) Conference on Learning Theory
    • Balcan, M.-F.1    Long, P.M.2
  • 10
    • 0000750020 scopus 로고
    • The perceptron algorithm is fast for nonmalicious distributions
    • E. B. Baum. The perceptron algorithm is fast for nonmalicious distributions. Neural Computation, 2:248-260, 1990.
    • (1990) Neural Computation , vol.2 , pp. 248-260
    • Baum, E.B.1
  • 13
    • 0001926474 scopus 로고    scopus 로고
    • A polynomial time algorithm for learning noisy linear threshold functions
    • A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning noisy linear threshold functions. Algorithmica, 22(1/2):35-52, 1997.
    • (1997) Algorithmica , vol.22 , Issue.1-2 , pp. 35-52
    • Blum, A.1    Frieze, A.2    Kannan, R.3    Vempala, S.4
  • 16
    • 67349151635 scopus 로고    scopus 로고
    • Using the doubling dimension to analyze the generalization of learning algorithms
    • N. H. Bshouty, Y. Li, and P. M. Long. Using the doubling dimension to analyze the generalization of learning algorithms. JCSS, 2009.
    • (2009) JCSS
    • Bshouty, N.H.1    Li, Y.2    Long, P.M.3
  • 17
    • 56449098707 scopus 로고    scopus 로고
    • Minimax bounds for active learning
    • R. Castro and R. Nowak. Minimax bounds for active learning. In COLT, 2007.
    • (2007) COLT
    • Castro, R.1    Nowak, R.2
  • 18
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning, 15(2), 1994.
    • (1994) Machine Learning , vol.15 , Issue.2
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 20
    • 71049162986 scopus 로고    scopus 로고
    • Coarse sample complexity bounds for active learning
    • S. Dasgupta. Coarse sample complexity bounds for active learning. In NIPS, volume 18, 2005.
    • (2005) NIPS , vol.18
    • Dasgupta, S.1
  • 22
    • 56449123291 scopus 로고    scopus 로고
    • A general agnostic active learning algorithm
    • S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. NIPS, 20, 2007.
    • (2007) NIPS , vol.20
    • Dasgupta, S.1    Hsu, D.2    Monteleoni, C.3
  • 23
    • 84869170500 scopus 로고    scopus 로고
    • Selective sampling and active learning from single and multiple teachers
    • O. Dekel, C. Gentile, and K. Sridharan. Selective sampling and active learning from single and multiple teachers. JMLR, 2012.
    • (2012) JMLR
    • Dekel, O.1    Gentile, C.2    Sridharan, K.3
  • 24
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3):133-168, 1997.
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.2    Shamir, E.3    Tishby, N.4
  • 28
    • 56449094315 scopus 로고    scopus 로고
    • A bound on the label complexity of agnostic active learning
    • S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML, 2007.
    • (2007) ICML
    • Hanneke, S.1
  • 29
    • 79551594780 scopus 로고    scopus 로고
    • Rates of convergence in active learning
    • S. Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1):333-361, 2011.
    • (2011) The Annals of Statistics , vol.39 , Issue.1 , pp. 333-361
    • Hanneke, S.1
  • 36
    • 78649426154 scopus 로고    scopus 로고
    • Rademacher complexities and bounding the excess risk in active learning
    • V. Koltchinskii. Rademacher complexities and bounding the excess risk in active learning. Journal of Machine Learning Research, 11:2457-2485, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2457-2485
    • Koltchinskii, V.1
  • 38
    • 85162323750 scopus 로고    scopus 로고
    • Lower bounds for passive and active learning
    • M. Raginsky and A. Rakhlin. Lower bounds for passive and active learning. In NIPS, 2011.
    • (2011) NIPS
    • Raginsky, M.1    Rakhlin, A.2
  • 43
    • 80052202374 scopus 로고    scopus 로고
    • Smoothness, disagreement coefficient and the label complexity of agnostic active learning
    • L. Wang. Smoothness, Disagreement Coefficient, and the Label Complexity of Agnostic Active Learning. JMLR, 2011.
    • (2011) JMLR
    • Wang, L.1
  • 44
    • 33645722194 scopus 로고    scopus 로고
    • Information theoretical upper and lower bounds for statistical estimation
    • T. Zhang. Information theoretical upper and lower bounds for statistical estimation. IEEE Transactions on Information Theory, 52(4):1307-1321, 2006.
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.4 , pp. 1307-1321
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.