-
1
-
-
0027795348
-
The hardness of approximate optima in lattices, codes, and systems of linear equations
-
S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. In Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science, 1993.
-
(1993)
Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science
-
-
Arora, S.1
Babai, L.2
Stern, J.3
Sweedyk, Z.4
-
5
-
-
84898988307
-
Statistical active learning algorithms
-
M.-F. Balcan and V. Feldman. Statistical active learning algorithms. NIPS, 2013.
-
(2013)
NIPS
-
-
Balcan, M.-F.1
Feldman, V.2
-
6
-
-
84898966798
-
Robust interactive learning
-
M.-F. Balcan and S. Hanneke. Robust interactive learning. In COLT, 2012.
-
(2012)
COLT
-
-
Balcan, M.-F.1
Hanneke, S.2
-
7
-
-
84860640656
-
The true sample complexity of active learning
-
M.-F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. In COLT, 2008.
-
(2008)
COLT
-
-
Balcan, M.-F.1
Hanneke, S.2
Wortman, J.3
-
8
-
-
84937847157
-
Active and passive learning of linear separators under log-concave distributions
-
M.-F. Balcan and P. M. Long. Active and passive learning of linear separators under log-concave distributions. In Conference on Learning Theory, 2013.
-
(2013)
Conference on Learning Theory
-
-
Balcan, M.-F.1
Long, P.M.2
-
9
-
-
26444592981
-
Local Rademacher complexities
-
P. L. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities. Annals of Statistics, 33(4):1497-1537, 2005.
-
(2005)
Annals of Statistics
, vol.33
, Issue.4
, pp. 1497-1537
-
-
Bartlett, P.L.1
Bousquet, O.2
Mendelson, S.3
-
10
-
-
0000750020
-
The perceptron algorithm is fast for nonmalicious distributions
-
E. B. Baum. The perceptron algorithm is fast for nonmalicious distributions. Neural Computation, 2:248-260, 1990.
-
(1990)
Neural Computation
, vol.2
, pp. 248-260
-
-
Baum, E.B.1
-
13
-
-
0001926474
-
A polynomial time algorithm for learning noisy linear threshold functions
-
A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning noisy linear threshold functions. Algorithmica, 22(1/2):35-52, 1997.
-
(1997)
Algorithmica
, vol.22
, Issue.1-2
, pp. 35-52
-
-
Blum, A.1
Frieze, A.2
Kannan, R.3
Vempala, S.4
-
15
-
-
84924053271
-
Theory of classification: A survey of recent advances
-
S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: a survey of recent advances. ESAIM: Probability and Statistics, 9:9:323-375, 2005.
-
(2005)
ESAIM: Probability and Statistics
, vol.9
, Issue.9
, pp. 323-375
-
-
Boucheron, S.1
Bousquet, O.2
Lugosi, G.3
-
16
-
-
67349151635
-
Using the doubling dimension to analyze the generalization of learning algorithms
-
N. H. Bshouty, Y. Li, and P. M. Long. Using the doubling dimension to analyze the generalization of learning algorithms. JCSS, 2009.
-
(2009)
JCSS
-
-
Bshouty, N.H.1
Li, Y.2
Long, P.M.3
-
17
-
-
56449098707
-
Minimax bounds for active learning
-
R. Castro and R. Nowak. Minimax bounds for active learning. In COLT, 2007.
-
(2007)
COLT
-
-
Castro, R.1
Nowak, R.2
-
18
-
-
0028424239
-
Improving generalization with active learning
-
D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning, 15(2), 1994.
-
(1994)
Machine Learning
, vol.15
, Issue.2
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
20
-
-
71049162986
-
Coarse sample complexity bounds for active learning
-
S. Dasgupta. Coarse sample complexity bounds for active learning. In NIPS, volume 18, 2005.
-
(2005)
NIPS
, vol.18
-
-
Dasgupta, S.1
-
22
-
-
56449123291
-
A general agnostic active learning algorithm
-
S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. NIPS, 20, 2007.
-
(2007)
NIPS
, vol.20
-
-
Dasgupta, S.1
Hsu, D.2
Monteleoni, C.3
-
23
-
-
84869170500
-
Selective sampling and active learning from single and multiple teachers
-
O. Dekel, C. Gentile, and K. Sridharan. Selective sampling and active learning from single and multiple teachers. JMLR, 2012.
-
(2012)
JMLR
-
-
Dekel, O.1
Gentile, C.2
Sridharan, K.3
-
24
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3):133-168, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.2-3
, pp. 133-168
-
-
Freund, Y.1
Seung, H.2
Shamir, E.3
Tishby, N.4
-
28
-
-
56449094315
-
A bound on the label complexity of agnostic active learning
-
S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML, 2007.
-
(2007)
ICML
-
-
Hanneke, S.1
-
29
-
-
79551594780
-
Rates of convergence in active learning
-
S. Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1):333-361, 2011.
-
(2011)
The Annals of Statistics
, vol.39
, Issue.1
, pp. 333-361
-
-
Hanneke, S.1
-
36
-
-
78649426154
-
Rademacher complexities and bounding the excess risk in active learning
-
V. Koltchinskii. Rademacher complexities and bounding the excess risk in active learning. Journal of Machine Learning Research, 11:2457-2485, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 2457-2485
-
-
Koltchinskii, V.1
-
38
-
-
85162323750
-
Lower bounds for passive and active learning
-
M. Raginsky and A. Rakhlin. Lower bounds for passive and active learning. In NIPS, 2011.
-
(2011)
NIPS
-
-
Raginsky, M.1
Rakhlin, A.2
-
43
-
-
80052202374
-
Smoothness, disagreement coefficient and the label complexity of agnostic active learning
-
L. Wang. Smoothness, Disagreement Coefficient, and the Label Complexity of Agnostic Active Learning. JMLR, 2011.
-
(2011)
JMLR
-
-
Wang, L.1
-
44
-
-
33645722194
-
Information theoretical upper and lower bounds for statistical estimation
-
T. Zhang. Information theoretical upper and lower bounds for statistical estimation. IEEE Transactions on Information Theory, 52(4):1307-1321, 2006.
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.4
, pp. 1307-1321
-
-
Zhang, T.1
|