-
1
-
-
0043124612
-
Rates of growth and sample moduli for weighted empirical processes indexed by sets
-
K.S. Alexander. Rates of growth and sample moduli for weighted empirical processes indexed by sets. Probability Theory and Related Fields, 75(3):379-423, 1987.
-
(1987)
Probability Theory and Related Fields
, vol.75
, Issue.3
, pp. 379-423
-
-
Alexander, K.S.1
-
2
-
-
0000227616
-
The central limit theorem for weighted empirical processes indexed by sets
-
K.S. Alexander. The central limit theorem for weighted empirical processes indexed by sets. Journal of Multivariate Analysis, 22(2):313-339, 1987.
-
(1987)
Journal of Multivariate Analysis
, vol.22
, Issue.2
, pp. 313-339
-
-
Alexander, K.S.1
-
3
-
-
0001199215
-
A general class of coefficients of divergence of one distribution from another
-
S. M. Ali and S. D. Silvey. A general class of coefficients of divergence of one distribution from another. J. Roy. Stat. Soc. Ser. B, 28:131-142, 1966.
-
(1966)
J. Roy. Stat. Soc. Ser. B
, vol.28
, pp. 131-142
-
-
Ali, S.M.1
Silvey, S.D.2
-
4
-
-
34250716969
-
Agnostic active learning
-
New York, NY, USA, ACM
-
M.-F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. In ICML '06: Proceedings of the 23rd international conference on Machine learning, pages 65-72, New York, NY, USA, 2006. ACM.
-
(2006)
ICML '06: Proceedings of the 23rd International Conference on Machine Learning
, pp. 65-72
-
-
Balcan, M.-F.1
Beygelzimer, A.2
Langford, J.3
-
5
-
-
70049107426
-
Importance weighted active learning
-
ACM New York, NY, USA
-
A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning. In ICML. ACM New York, NY, USA, 2009.
-
(2009)
ICML
-
-
Beygelzimer, A.1
Dasgupta, S.2
Langford, J.3
-
6
-
-
80052365883
-
An interval estimation problem for controlled observations
-
M.V. Burnashev and K.S. Zigangirov. An interval estimation problem for controlled observations. Problemy Peredachi Informatsii, 10(3):51-61, 1974.
-
(1974)
Problemy Peredachi Informatsii
, vol.10
, Issue.3
, pp. 51-61
-
-
Burnashev, M.V.1
Zigangirov, K.S.2
-
7
-
-
43749112531
-
Minimax bounds for active learning
-
R. M. Castro and R. D. Nowak. Minimax bounds for active learning. IEEE Trans. Inform. Theory, 54(5):2339-2353, 2008.
-
(2008)
IEEE Trans. Inform. Theory
, vol.54
, Issue.5
, pp. 2339-2353
-
-
Castro, R.M.1
Nowak, R.D.2
-
9
-
-
0028424239
-
Improving generalization with active learning
-
D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning, 15(2):201-221, 1994.
-
(1994)
Machine Learning
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
10
-
-
0000489740
-
Information-type measures of difference of probability distributions and indirect observations
-
I. Csiszár. Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar., 2:299-318, 1967.
-
(1967)
Studia Sci. Math. Hungar.
, vol.2
, pp. 299-318
-
-
Csiszár, I.1
-
11
-
-
85161987046
-
A general agnostic active learning algorithm
-
S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In Advances in neural information processing systems, volume 20, page 2, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.20
, pp. 2
-
-
Dasgupta, S.1
Hsu, D.2
Monteleoni, C.3
-
12
-
-
0024739191
-
A general lower bound on the number of examples needed for learning
-
A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on the number of examples needed for learning. Information and Computation, 82(3):247-261, 1989.
-
(1989)
Information and Computation
, vol.82
, Issue.3
, pp. 247-261
-
-
Ehrenfeucht, A.1
Haussler, D.2
Kearns, M.3
Valiant, L.4
-
13
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2):133-168, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.2
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
Tishby, N.4
-
14
-
-
0035354041
-
Improved lower bounds for learning from noisy examples: An informationtheoretic approach
-
C. Gentile and D. P. Helmbold. Improved lower bounds for learning from noisy examples: an informationtheoretic approach. Inform. Comput., 166:133-155, 2001.
-
(2001)
Inform. Comput.
, vol.166
, pp. 133-155
-
-
Gentile, C.1
Helmbold, D.P.2
-
15
-
-
33746227538
-
Concentration inequalities and asymptotic results for ratio type empirical processes
-
E. Giné and V. Koltchinskii. Concentration inequalities and asymptotic results for ratio type empirical processes. Ann. Statist., 34(3):1143-1216, 2006.
-
(2006)
Ann. Statist.
, vol.34
, Issue.3
, pp. 1143-1216
-
-
Giné, E.1
Koltchinskii, V.2
-
16
-
-
79952844965
-
Lower bounds for the minimax risk using f-divergences and applications
-
A. Guntuboyina. Lower bounds for the minimax risk using f-divergences, and applications. IEEE Trans. Inf. Theory, 57(4):2386-2399, 2011.
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, Issue.4
, pp. 2386-2399
-
-
Guntuboyina, A.1
-
18
-
-
0028460334
-
Generalizing the Fano inequality
-
T. S. Han and S. Verdú. Generalizing the Fano inequality. IEEE Trans. Inf. Theory, 40(4):1247-1251, 1994.
-
(1994)
IEEE Trans. Inf. Theory
, vol.40
, Issue.4
, pp. 1247-1251
-
-
Han, T.S.1
Verdú, S.2
-
20
-
-
79551594780
-
Rates of convergence in active learning
-
S. Hanneke. Rates of convergence in active learning. Ann. Statist., 39(1):333-361, 2011.
-
(2011)
Ann. Statist.
, vol.39
, Issue.1
, pp. 333-361
-
-
Hanneke, S.1
-
21
-
-
84938606227
-
Generalized teaching dimensions and the query complexity of learning
-
New York, NY, USA, ACM
-
T. Hegedüs. Generalized teaching dimensions and the query complexity of learning. In COLT '95, pages 108-117, New York, NY, USA, 1995. ACM.
-
(1995)
COLT '95
, pp. 108-117
-
-
Hegedüs, T.1
-
22
-
-
33750727664
-
Active learning in the non-realizable case
-
M. Kääriäinen. Active learning in the non-realizable case. In ALT, pages 63-77, 2006.
-
(2006)
ALT
, pp. 63-77
-
-
Kääriäinen, M.1
-
23
-
-
78649426154
-
Rademacher complexities and bounding the excess risk of active learning
-
V. Koltchinskii. Rademacher complexities and bounding the excess risk of active learning. J. Machine Learn. Res., 11:2457-2485, 2010.
-
(2010)
J. Machine Learn. Res.
, vol.11
, pp. 2457-2485
-
-
Koltchinskii, V.1
-
24
-
-
33746243474
-
Risk bounds for statistical learning
-
P. Massart and É. Nédélec. Risk bounds for statistical learning. Ann. Statist., 34(5):2326-2366, 2006.
-
(2006)
Ann. Statist.
, vol.34
, Issue.5
, pp. 2326-2366
-
-
Massart, P.1
Nédélec, E.2
-
27
-
-
0033233737
-
Information-theoretic determination of minimax rates of convergence
-
Y. Yang and A. Barron. Information-theoretic determination of minimax rates of convergence. Ann. Statist., 27(5):1564-1599, 1999.
-
(1999)
Ann. Statist.
, vol.27
, Issue.5
, pp. 1564-1599
-
-
Yang, Y.1
Barron, A.2
|