메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Statistical active learning algorithms

Author keywords

[No Author keywords available]

Indexed keywords

TEXT PROCESSING;

EID: 84898988307     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (33)

References (35)
  • 1
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2:343-370, 1988.
    • (1988) Machine Learning , vol.2 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 2
    • 0032047249 scopus 로고    scopus 로고
    • Specification and simulation of statistical query algorithms for efficiency and noise tolerance
    • J. Aslam and S. Decatur. Specification and simulation of statistical query algorithms for efficiency and noise tolerance. JCSS, 56:191-208, 1998.
    • (1998) JCSS , vol.56 , pp. 191-208
    • Aslam, J.1    Decatur, S.2
  • 3
    • 38049078541 scopus 로고    scopus 로고
    • Margin based active learning
    • M. Balcan, A. Broder, and T. Zhang. Margin based active learning. In COLT, pages 35-50, 2007.
    • (2007) COLT , pp. 35-50
    • Balcan, M.1    Broder, A.2    Zhang, T.3
  • 6
    • 84898966798 scopus 로고    scopus 로고
    • Robust interactive learning
    • M.-F. Balcan and S. Hanneke. Robust interactive learning. In COLT, 2012.
    • (2012) COLT
    • Balcan, M.-F.1    Hanneke, S.2
  • 7
    • 84860640656 scopus 로고    scopus 로고
    • The true sample complexity of active learning
    • M.-F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. In COLT, 2008.
    • (2008) COLT
    • Balcan, M.-F.1    Hanneke, S.2    Wortman, J.3
  • 8
    • 84898034026 scopus 로고    scopus 로고
    • Active and passive learning of linear separators under log-concave distributions
    • M.-F. Balcan and P. M. Long. Active and passive learning of linear separators under log-concave distributions. JMLR - COLT proceedings (to appear), 2013.
    • (2013) JMLR - COLT Proceedings (To Appear)
    • Balcan, M.-F.1    Long, P.M.2
  • 9
    • 71149101362 scopus 로고    scopus 로고
    • Importance weighted active learning
    • A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning. In ICML, pages 49-56, 2009.
    • (2009) ICML , pp. 49-56
    • Beygelzimer, A.1    Dasgupta, S.2    Langford, J.3
  • 12
    • 0001926474 scopus 로고    scopus 로고
    • A polynomial time algorithm for learning noisy linear threshold functions
    • A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning noisy linear threshold functions. Algorithmica, 22(1/2):35-52, 1997.
    • (1997) Algorithmica , vol.22 , Issue.1-2 , pp. 35-52
    • Blum, A.1    Frieze, A.2    Kannan, R.3    Vempala, S.4
  • 13
    • 0028062299 scopus 로고
    • Weakly learning DNF and characterizing statistical query learning using Fourier analysis
    • A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning DNF and characterizing statistical query learning using Fourier analysis. In STOC, pages 253-262, 1994.
    • (1994) STOC , pp. 253-262
    • Blum, A.1    Furst, M.2    Jackson, J.3    Kearns, M.4    Mansour, Y.5    Rudich, S.6
  • 15
    • 56449098707 scopus 로고    scopus 로고
    • Minimax bounds for active learning
    • R. Castro and R. Nowak. Minimax bounds for active learning. In COLT, 2007.
    • (2007) COLT
    • Castro, R.1    Nowak, R.2
  • 16
    • 84898053376 scopus 로고    scopus 로고
    • Learning noisy linear classifiers via adaptive and selective sampling
    • N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Learning noisy linear classifiers via adaptive and selective sampling. Machine Learning, 2010.
    • (2010) Machine Learning
    • Cesa-Bianchi, N.1    Gentile, C.2    Zaniboni, L.3
  • 18
    • 71049162986 scopus 로고    scopus 로고
    • Coarse sample complexity bounds for active learning
    • S. Dasgupta. Coarse sample complexity bounds for active learning. In NIPS, volume 18, 2005.
    • (2005) NIPS , vol.18
    • Dasgupta, S.1
  • 20
    • 56449108037 scopus 로고    scopus 로고
    • Hierarchical sampling for active learning
    • S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In ICML, pages 208-215, 2008.
    • (2008) ICML , pp. 208-215
    • Dasgupta, S.1    Hsu, D.2
  • 21
    • 56449123291 scopus 로고    scopus 로고
    • A general agnostic active learning algorithm
    • S. Dasgupta, D.J. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. NIPS, 20, 2007.
    • (2007) NIPS , vol.20
    • Dasgupta, S.1    Hsu, D.J.2    Monteleoni, C.3
  • 23
    • 84869170500 scopus 로고    scopus 로고
    • Selective sampling and active learning from single and multiple teachers
    • O. Dekel, C. Gentile, and K. Sridharan. Selective sampling and active learning from single and multiple teachers. JMLR, 2012.
    • (2012) JMLR
    • Dekel, O.1    Gentile, C.2    Sridharan, K.3
  • 24
    • 4544291740 scopus 로고    scopus 로고
    • A simple polynomial-time rescaling algorithm for solving linear programs
    • J. Dunagan and S. Vempala. A simple polynomial-time rescaling algorithm for solving linear programs. In STOC, pages 315-320, 2004.
    • (2004) STOC , pp. 315-320
    • Dunagan, J.1    Vempala, S.2
  • 25
    • 33745556605 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, pages 265-284, 2006.
    • (2006) TCC , pp. 265-284
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 26
    • 84861597048 scopus 로고    scopus 로고
    • A complete characterization of statistical query learning with applications to evolvability
    • V. Feldman. A complete characterization of statistical query learning with applications to evolvability. Journal of Computer System Sciences, 78(5):1444-1459, 2012.
    • (2012) Journal of Computer System Sciences , vol.78 , Issue.5 , pp. 1444-1459
    • Feldman, V.1
  • 27
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3):133-168, 1997.
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 28
    • 84898030270 scopus 로고    scopus 로고
    • Efficient pool-based active learning of halfspaces
    • A. Gonen, S. Sabato, and S. Shalev-Shwartz. Efficient pool-based active learning of halfspaces. In ICML, 2013.
    • (2013) ICML
    • Gonen, A.1    Sabato, S.2    Shalev-Shwartz, S.3
  • 29
    • 56449094315 scopus 로고    scopus 로고
    • A bound on the label complexity of agnostic active learning
    • S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML, 2007.
    • (2007) ICML
    • Hanneke, S.1
  • 30
    • 0032202014 scopus 로고    scopus 로고
    • Efficient noise-tolerant learning from statistical queries
    • M. Kearns. Efficient noise-tolerant learning from statistical queries. JACM, 45(6):983-1006, 1998.
    • (1998) JACM , vol.45 , Issue.6 , pp. 983-1006
    • Kearns, M.1
  • 31
    • 78649426154 scopus 로고    scopus 로고
    • Rademacher complexities and bounding the excess risk in active learning
    • V. Koltchinskii. Rademacher complexities and bounding the excess risk in active learning. JMLR, 11:2457-2485, 2010.
    • (2010) JMLR , vol.11 , pp. 2457-2485
    • Koltchinskii, V.1
  • 32
    • 34247517393 scopus 로고    scopus 로고
    • The geometry of logconcave functions and sampling algorithms random
    • L. Lovász and S. Vempala. The geometry of logconcave functions and sampling algorithms. Random Struct. Algorithms, 30(3):307-358, 2007.
    • (2007) Struct. Algorithms , vol.30 , Issue.3 , pp. 307-358
    • Lovász, L.1    Vempala, S.2
  • 33
    • 0000314722 scopus 로고    scopus 로고
    • Employing em in pool-based active learning for text classification
    • A. McCallum and K. Nigam. Employing EM in pool-based active learning for text classification. In ICML, pages 350-358, 1998.
    • (1998) ICML , pp. 350-358
    • McCallum, A.1    Nigam, K.2
  • 34
    • 85162323750 scopus 로고    scopus 로고
    • Lower bounds for passive and active learning
    • M. Raginsky and A. Rakhlin. Lower bounds for passive and active learning. In NIPS, pages 1026-1034, 2011.
    • (2011) NIPS , pp. 1026-1034
    • Raginsky, M.1    Rakhlin, A.2
  • 35
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.