-
1
-
-
0000492326
-
Learning from noisy examples
-
D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2:343-370, 1988.
-
(1988)
Machine Learning
, vol.2
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
2
-
-
0032047249
-
Specification and simulation of statistical query algorithms for efficiency and noise tolerance
-
J. Aslam and S. Decatur. Specification and simulation of statistical query algorithms for efficiency and noise tolerance. JCSS, 56:191-208, 1998.
-
(1998)
JCSS
, vol.56
, pp. 191-208
-
-
Aslam, J.1
Decatur, S.2
-
3
-
-
38049078541
-
Margin based active learning
-
M. Balcan, A. Broder, and T. Zhang. Margin based active learning. In COLT, pages 35-50, 2007.
-
(2007)
COLT
, pp. 35-50
-
-
Balcan, M.1
Broder, A.2
Zhang, T.3
-
6
-
-
84898966798
-
Robust interactive learning
-
M.-F. Balcan and S. Hanneke. Robust interactive learning. In COLT, 2012.
-
(2012)
COLT
-
-
Balcan, M.-F.1
Hanneke, S.2
-
7
-
-
84860640656
-
The true sample complexity of active learning
-
M.-F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. In COLT, 2008.
-
(2008)
COLT
-
-
Balcan, M.-F.1
Hanneke, S.2
Wortman, J.3
-
8
-
-
84898034026
-
Active and passive learning of linear separators under log-concave distributions
-
M.-F. Balcan and P. M. Long. Active and passive learning of linear separators under log-concave distributions. JMLR - COLT proceedings (to appear), 2013.
-
(2013)
JMLR - COLT Proceedings (To Appear)
-
-
Balcan, M.-F.1
Long, P.M.2
-
11
-
-
33244468835
-
Practical privacy: The SuLQ framework
-
A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the SuLQ framework. In Proceedings of PODS, pages 128-138, 2005.
-
(2005)
Proceedings of PODS
, pp. 128-138
-
-
Blum, A.1
Dwork, C.2
McSherry, F.3
Nissim, K.4
-
12
-
-
0001926474
-
A polynomial time algorithm for learning noisy linear threshold functions
-
A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning noisy linear threshold functions. Algorithmica, 22(1/2):35-52, 1997.
-
(1997)
Algorithmica
, vol.22
, Issue.1-2
, pp. 35-52
-
-
Blum, A.1
Frieze, A.2
Kannan, R.3
Vempala, S.4
-
13
-
-
0028062299
-
Weakly learning DNF and characterizing statistical query learning using Fourier analysis
-
A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning DNF and characterizing statistical query learning using Fourier analysis. In STOC, pages 253-262, 1994.
-
(1994)
STOC
, pp. 253-262
-
-
Blum, A.1
Furst, M.2
Jackson, J.3
Kearns, M.4
Mansour, Y.5
Rudich, S.6
-
14
-
-
0024750852
-
Learnability and the Vapnik-Chervonenkis dimension
-
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929-965, 1989.
-
(1989)
Journal of the ACM
, vol.36
, Issue.4
, pp. 929-965
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.4
-
15
-
-
56449098707
-
Minimax bounds for active learning
-
R. Castro and R. Nowak. Minimax bounds for active learning. In COLT, 2007.
-
(2007)
COLT
-
-
Castro, R.1
Nowak, R.2
-
16
-
-
84898053376
-
Learning noisy linear classifiers via adaptive and selective sampling
-
N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Learning noisy linear classifiers via adaptive and selective sampling. Machine Learning, 2010.
-
(2010)
Machine Learning
-
-
Cesa-Bianchi, N.1
Gentile, C.2
Zaniboni, L.3
-
17
-
-
56049109090
-
Map-reduce for machine learning on multicore
-
C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun. Map-reduce for machine learning on multicore. In Proceedings of NIPS, pages 281-288, 2006.
-
(2006)
Proceedings of NIPS
, pp. 281-288
-
-
Chu, C.1
Kim, S.2
Lin, Y.3
Yu, Y.4
Bradski, G.5
Ng, A.6
Olukotun, K.7
-
18
-
-
71049162986
-
Coarse sample complexity bounds for active learning
-
S. Dasgupta. Coarse sample complexity bounds for active learning. In NIPS, volume 18, 2005.
-
(2005)
NIPS
, vol.18
-
-
Dasgupta, S.1
-
20
-
-
56449108037
-
Hierarchical sampling for active learning
-
S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In ICML, pages 208-215, 2008.
-
(2008)
ICML
, pp. 208-215
-
-
Dasgupta, S.1
Hsu, D.2
-
21
-
-
56449123291
-
A general agnostic active learning algorithm
-
S. Dasgupta, D.J. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. NIPS, 20, 2007.
-
(2007)
NIPS
, vol.20
-
-
Dasgupta, S.1
Hsu, D.J.2
Monteleoni, C.3
-
23
-
-
84869170500
-
Selective sampling and active learning from single and multiple teachers
-
O. Dekel, C. Gentile, and K. Sridharan. Selective sampling and active learning from single and multiple teachers. JMLR, 2012.
-
(2012)
JMLR
-
-
Dekel, O.1
Gentile, C.2
Sridharan, K.3
-
24
-
-
4544291740
-
A simple polynomial-time rescaling algorithm for solving linear programs
-
J. Dunagan and S. Vempala. A simple polynomial-time rescaling algorithm for solving linear programs. In STOC, pages 315-320, 2004.
-
(2004)
STOC
, pp. 315-320
-
-
Dunagan, J.1
Vempala, S.2
-
25
-
-
33745556605
-
Calibrating noise to sensitivity in private data analysis
-
C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, pages 265-284, 2006.
-
(2006)
TCC
, pp. 265-284
-
-
Dwork, C.1
McSherry, F.2
Nissim, K.3
Smith, A.4
-
26
-
-
84861597048
-
A complete characterization of statistical query learning with applications to evolvability
-
V. Feldman. A complete characterization of statistical query learning with applications to evolvability. Journal of Computer System Sciences, 78(5):1444-1459, 2012.
-
(2012)
Journal of Computer System Sciences
, vol.78
, Issue.5
, pp. 1444-1459
-
-
Feldman, V.1
-
27
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3):133-168, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.2-3
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
Tishby, N.4
-
28
-
-
84898030270
-
Efficient pool-based active learning of halfspaces
-
A. Gonen, S. Sabato, and S. Shalev-Shwartz. Efficient pool-based active learning of halfspaces. In ICML, 2013.
-
(2013)
ICML
-
-
Gonen, A.1
Sabato, S.2
Shalev-Shwartz, S.3
-
29
-
-
56449094315
-
A bound on the label complexity of agnostic active learning
-
S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML, 2007.
-
(2007)
ICML
-
-
Hanneke, S.1
-
30
-
-
0032202014
-
Efficient noise-tolerant learning from statistical queries
-
M. Kearns. Efficient noise-tolerant learning from statistical queries. JACM, 45(6):983-1006, 1998.
-
(1998)
JACM
, vol.45
, Issue.6
, pp. 983-1006
-
-
Kearns, M.1
-
31
-
-
78649426154
-
Rademacher complexities and bounding the excess risk in active learning
-
V. Koltchinskii. Rademacher complexities and bounding the excess risk in active learning. JMLR, 11:2457-2485, 2010.
-
(2010)
JMLR
, vol.11
, pp. 2457-2485
-
-
Koltchinskii, V.1
-
32
-
-
34247517393
-
The geometry of logconcave functions and sampling algorithms random
-
L. Lovász and S. Vempala. The geometry of logconcave functions and sampling algorithms. Random Struct. Algorithms, 30(3):307-358, 2007.
-
(2007)
Struct. Algorithms
, vol.30
, Issue.3
, pp. 307-358
-
-
Lovász, L.1
Vempala, S.2
-
33
-
-
0000314722
-
Employing em in pool-based active learning for text classification
-
A. McCallum and K. Nigam. Employing EM in pool-based active learning for text classification. In ICML, pages 350-358, 1998.
-
(1998)
ICML
, pp. 350-358
-
-
McCallum, A.1
Nigam, K.2
-
34
-
-
85162323750
-
Lower bounds for passive and active learning
-
M. Raginsky and A. Rakhlin. Lower bounds for passive and active learning. In NIPS, pages 1026-1034, 2011.
-
(2011)
NIPS
, pp. 1026-1034
-
-
Raginsky, M.1
Rakhlin, A.2
-
35
-
-
0021518106
-
A theory of the learnable
-
L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984.
-
(1984)
Communications of the ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
|