메뉴 건너뛰기




Volumn 49, Issue 3, 2014, Pages 332-337

Application of machine learning algorithms for clinical predictive modeling: A data-mining approach in SCT

Author keywords

[No Author keywords available]

Indexed keywords

ACCESS TO INFORMATION; ALGORITHM; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; CLINICAL DECISION MAKING; CLINICAL RESEARCH; CONCEPT ANALYSIS; DATA ANALYSIS; DATA BASE; DATA MINING; DIAGNOSTIC ACCURACY; HEMATOLOGIST; HEMATOPOIETIC STEM CELL TRANSPLANTATION; INFORMATION PROCESSING; MACHINE LEARNING; MORTALITY; NONLINEAR SYSTEM; OUTCOME ASSESSMENT; PREDICTION; PRIORITY JOURNAL; REGISTRATION; RETROSPECTIVE STUDY; REVIEW; SCORING SYSTEM; STATISTICAL ANALYSIS; STATISTICAL MODEL; SUPPORT VECTOR MACHINE; TREATMENT OUTCOME; BIOLOGY; DECISION TREE; HEMATOLOGY; HUMAN; PROCEDURES; REPRODUCIBILITY; STEM CELL TRANSPLANTATION;

EID: 84904242833     PISSN: 02683369     EISSN: 14765365     Source Type: Journal    
DOI: 10.1038/bmt.2013.146     Document Type: Review
Times cited : (90)

References (59)
  • 1
    • 33646119401 scopus 로고    scopus 로고
    • Hematopoietic stem-cell transplantation
    • Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med 2006; 354: 1813-1826.
    • (2006) N Engl J Med , vol.354 , pp. 1813-1826
    • Copelan, E.A.1
  • 3
    • 77955583042 scopus 로고    scopus 로고
    • How we approach patient evaluation for hematopoietic stem cell transplantation
    • Hamadani M, Craig M, Awan FT, Devine SM. How we approach patient evaluation for hematopoietic stem cell transplantation. Bone Marrow Transplant 45: 1259-1268.
    • Bone Marrow Transplant , vol.45 , pp. 1259-1268
    • Hamadani, M.1    Craig, M.2    Awan, F.T.3    Devine, S.M.4
  • 4
    • 70350090181 scopus 로고    scopus 로고
    • Risk score for outcome after allogeneic hematopoietic stem cell transplantation: A retrospective analysis
    • Gratwohl A, Stern M, Brand R, Apperley J, Baldomero H, de Witte T et al. Risk score for outcome after allogeneic hematopoietic stem cell transplantation: a retrospective analysis. Cancer 2009; 115: 4715-4726.
    • (2009) Cancer , vol.115 , pp. 4715-4726
    • Gratwohl, A.1    Stern, M.2    Brand, R.3    Apperley, J.4    Baldomero, H.5    De Witte, T.6
  • 5
    • 33645643877 scopus 로고    scopus 로고
    • A risk score for mortality after allogeneic hematopoietic cell transplantation
    • Parimon T, Au DH, Martin PJ, Chien JW. A risk score for mortality after allogeneic hematopoietic cell transplantation. Ann Intern Med 2006; 144: 407-414.
    • (2006) Ann Intern Med , vol.144 , pp. 407-414
    • Parimon, T.1    Au, D.H.2    Martin, P.J.3    Chien, J.W.4
  • 6
    • 23944440464 scopus 로고    scopus 로고
    • Hema-topoietic cell transplantation (HCT)-specific comorbidity index: A new tool for risk assessment before allogeneic HCT
    • Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG et al. Hema-topoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 2005; 106: 2912-2919.
    • (2005) Blood , vol.106 , pp. 2912-2919
    • Sorror, M.L.1    Maris, M.B.2    Storb, R.3    Baron, F.4    Sandmaier, B.M.5    Maloney, D.G.6
  • 7
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures (with comments and a rejoinder by the author)
    • Breiman L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat Sci 2001; 16: 199-231.
    • (2001) Stat Sci , vol.16 , pp. 199-231
    • Breiman, L.1
  • 8
    • 0034832960 scopus 로고    scopus 로고
    • Logistic regression in the medical literature: Standards for use and reporting, with particular attention to one medical domain
    • Bagley SC, White H, Golomb BA. Logistic regression in the medical literature: standards for use and reporting, with particular attention to one medical domain. J Clin Epidemiol 2001; 54: 979-985.
    • (2001) J Clin Epidemiol , vol.54 , pp. 979-985
    • Bagley, S.C.1    White, H.2    Golomb, B.A.3
  • 9
    • 0032367976 scopus 로고    scopus 로고
    • Data mining: Statistics and more?
    • Hand DJ. Data mining: statistics and more? Am Stat 1998; 52: 112-118.
    • (1998) Am Stat , vol.52 , pp. 112-118
    • Hand, D.J.1
  • 10
    • 0030221202 scopus 로고    scopus 로고
    • Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis
    • Sun GW, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol 1996; 49: 907-916.
    • (1996) J Clin Epidemiol , vol.49 , pp. 907-916
    • Sun, G.W.1    Shook, T.L.2    Kay, G.L.3
  • 11
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 1996; 49: 1225-1231.
    • (1996) J Clin Epidemiol , vol.49 , pp. 1225-1231
    • Tu, J.V.1
  • 12
    • 84861235431 scopus 로고    scopus 로고
    • Mining electronic health records: Towards better research applications and clinical care
    • Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 2012; 13: 395-405.
    • (2012) Nat Rev Genet , vol.13 , pp. 395-405
    • Jensen, P.B.1    Jensen, L.J.2    Brunak, S.3
  • 15
    • 0002337827 scopus 로고    scopus 로고
    • Machine learning and data mining
    • Mitchell T. Machine learning and data mining. Commun ACM 1999; 42: 30-36.
    • (1999) Commun ACM , vol.42 , pp. 30-36
    • Mitchell, T.1
  • 19
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503-511.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1    Eisen, M.B.2    Davis, R.E.3    Ma, C.4    Lossos, I.S.5    Rosenwald, A.6
  • 20
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68-74.
    • (2002) Nat Med , vol.8 , pp. 68-74
    • Shipp, M.A.1    Ross, K.N.2    Tamayo, P.3    Weng, A.P.4    Kutok, J.L.5    Aguiar, R.C.6
  • 23
    • 60049084145 scopus 로고    scopus 로고
    • Classification models for the prediction of cliniciansâht information needs
    • Del Fiol G, Haug PJ. Classification models for the prediction of cliniciansâht information needs. J Biomed Inform 2009; 42: 82.
    • (2009) J Biomed Inform , vol.42 , pp. 82
    • Del Fiol, G.1    Haug, P.J.2
  • 24
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • Hall MA, Holmes G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans Knowledge Data Eng 2003; 15: 1437-1447.
    • (2003) IEEE Trans Knowledge Data Eng , vol.15 , pp. 1437-1447
    • Hall, M.A.1    Holmes, G.2
  • 26
    • 84865125394 scopus 로고    scopus 로고
    • Algorithm to determine the outcome of patients with acute liver failure: A data-mining analysis using decision trees
    • Nakayama N, Oketani M, Kawamura Y, Inao M, Nagoshi S, Fujiwara K et al. Algorithm to determine the outcome of patients with acute liver failure: a data-mining analysis using decision trees. J Gastroenterol 2012; 47: 664-677.
    • (2012) J Gastroenterol , vol.47 , pp. 664-677
    • Nakayama, N.1    Oketani, M.2    Kawamura, Y.3    Inao, M.4    Nagoshi, S.5    Fujiwara, K.6
  • 27
    • 84862207098 scopus 로고    scopus 로고
    • Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model
    • Takada M, Sugimoto M, Naito Y, Moon HG, Han W, Noh DY et al. Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model. BMC Med Inform Decis Mak 2012; 12: 54.
    • (2012) BMC Med Inform Decis Mak , vol.12 , pp. 54
    • Takada, M.1    Sugimoto, M.2    Naito, Y.3    Moon, H.G.4    Han, W.5    Noh, D.Y.6
  • 28
    • 84890074071 scopus 로고    scopus 로고
    • Iron-deficiency anemia detection from hematology parameters by using decision trees
    • Dogan S, Turkoglu I. Iron-deficiency anemia detection from hematology parameters by using decision trees. Int J Sci Technol 2008; 3: 85-92.
    • (2008) Int J Sci Technol , vol.3 , pp. 85-92
    • Dogan, S.1    Turkoglu, I.2
  • 29
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001; 45: 5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 30
    • 38949126980 scopus 로고    scopus 로고
    • What are artificial neural networks?
    • Krogh A. What are artificial neural networks? Nat Biotechnol 2008; 26: 195-197.
    • (2008) Nat Biotechnol , vol.26 , pp. 195-197
    • Krogh, A.1
  • 32
    • 20144387857 scopus 로고    scopus 로고
    • Prediction of survival in patients with esophageal carcinoma using artificial neural networks
    • Sato F, Shimada Y, Selaru FM, Shibata D, Maeda M, Watanabe G et al. Prediction of survival in patients with esophageal carcinoma using artificial neural networks. Cancer 2005; 103: 1596-1605.
    • (2005) Cancer , vol.103 , pp. 1596-1605
    • Sato, F.1    Shimada, Y.2    Selaru, F.M.3    Shibata, D.4    Maeda, M.5    Watanabe, G.6
  • 33
    • 0035871395 scopus 로고    scopus 로고
    • Comparison of artificial neural networks with other statistical approaches: Results from medical data sets
    • Sargent DJ. Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer 2001; 91: 1636-1642.
    • (2001) Cancer , vol.91 , pp. 1636-1642
    • Sargent, D.J.1
  • 34
    • 79551655286 scopus 로고    scopus 로고
    • Artificial neural networks accurately predict mortality in patients with nonvariceal upper GI bleeding
    • Rotondano G, Cipolletta L, Grossi E, Koch M, Intraligi M, Buscema M et al. Artificial neural networks accurately predict mortality in patients with nonvariceal upper GI bleeding. Gastrointest Endosc 2011; 73: 226 e1-2.
    • (2011) Gastrointest Endosc , vol.73
    • Rotondano, G.1    Cipolletta, L.2    Grossi, E.3    Koch, M.4    Intraligi, M.5    Buscema, M.6
  • 35
    • 33746901239 scopus 로고    scopus 로고
    • The use of artificial neural networks in decision support in cancer: A systematic review
    • Lisboa PJ, Taktak AF. The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 2006; 19: 408-415.
    • (2006) Neural Netw , vol.19 , pp. 408-415
    • Lisboa, P.J.1    Taktak, A.F.2
  • 36
    • 77951469347 scopus 로고    scopus 로고
    • Comparison between an artificial neural network and logistic regression in predicting acute graft-vs-host disease after unrelated donor hematopoietic stem cell transplantation in thalassemia patients
    • Caocci G, Baccoli R, Vacca A, Mastronuzzi A, Bertaina A, Piras E et al. Comparison between an artificial neural network and logistic regression in predicting acute graft-vs-host disease after unrelated donor hematopoietic stem cell transplantation in thalassemia patients. Exp Hematol 38: 426-433.
    • Exp Hematol , vol.38 , pp. 426-433
    • Caocci, G.1    Baccoli, R.2    Vacca, A.3    Mastronuzzi, A.4    Bertaina, A.5    Piras, E.6
  • 37
    • 33845703344 scopus 로고    scopus 로고
    • What is a support vector machine?
    • Noble WS. What is a support vector machine? Nat Biotechnol 2006; 24: 1565-1567.
    • (2006) Nat Biotechnol , vol.24 , pp. 1565-1567
    • Noble, W.S.1
  • 40
    • 0043166415 scopus 로고    scopus 로고
    • Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines
    • Lu C, Van Gestel T, Suykens JA, Van Huffel S, Vergote I, Timmerman D. Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines. Artif Intell Med 2003; 28: 281-306.
    • (2003) Artif Intell Med , vol.28 , pp. 281-306
    • Lu, C.1    Van Gestel, T.2    Suykens, J.A.3    Van Huffel, S.4    Vergote, I.5    Timmerman, D.6
  • 41
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J Royal Stat Soc. Series B (Methodological) 1974 111-147.
    • (1974) J Royal Stat Soc. Series B (Methodological) , pp. 111-147
    • Stone, M.1
  • 43
    • 33644912316 scopus 로고    scopus 로고
    • Measuring diagnostic and predictive accuracy in disease management: An introduction to receiver operating characteristic (ROC) analysis
    • Linden A. Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract 2006; 12: 132-139.
    • (2006) J Eval Clin Pract , vol.12 , pp. 132-139
    • Linden, A.1
  • 44
    • 84872556902 scopus 로고    scopus 로고
    • Improved feature selection for hematopoietic cell transplantation outcome prediction using rank aggregation
    • 2012 Federated Conference on 9-12 September
    • Sarkar C, Cooley S, Srivastava J. Improved feature selection for hematopoietic cell transplantation outcome prediction using rank aggregation. Computer Science and Information Systems (FedCSIS), 2012 Federated Conference on 9-12 September, 2012
    • (2012) Computer Science and Information Systems (FedCSIS)
    • Sarkar, C.1    Cooley, S.2    Srivastava, J.3
  • 45
    • 84872556902 scopus 로고    scopus 로고
    • Improved feature selection for hematopoietic cell transplantation outcome prediction using rank aggregation
    • 9-12 September
    • Improved feature selection for hematopoietic cell transplantation outcome prediction using rank aggregation. 2012 Federated Conference on Computer Science and Information Systems (FedCSIS); 9-12 September 2012.
    • (2012) 2012 Federated Conference on Computer Science and Information Systems (FedCSIS)
  • 46
    • 77957130052 scopus 로고    scopus 로고
    • Missing data imputation using statistical and machine learning methods in a real breast cancer problem
    • Jerez JM, Molina I, Garcia-Laencina PJ, Alba E, Ribelles N, Martin M et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med 2010; 50: 105-115.
    • (2010) Artif Intell Med , vol.50 , pp. 105-115
    • Jerez, J.M.1    Molina, I.2    Garcia-Laencina, P.J.3    Alba, E.4    Ribelles, N.5    Martin, M.6
  • 47
    • 84864609657 scopus 로고    scopus 로고
    • A clinical decision support tool to predict survival in cancer patients beyond 120 days after palliative chemotherapy
    • Ng T, Chew L, Yap CW. A clinical decision support tool to predict survival in cancer patients beyond 120 days after palliative chemotherapy. J Palliat Med 2012; 15: 863-869.
    • (2012) J Palliat Med , vol.15 , pp. 863-869
    • Ng, T.1    Chew, L.2    Yap, C.W.3
  • 48
    • 77951625860 scopus 로고    scopus 로고
    • A machine learning-based approach to prognostic analysis of thoracic transplantations
    • Delen D, Oztekin A, Kong ZJ. A machine learning-based approach to prognostic analysis of thoracic transplantations. Artif Intell Med 2010; 49: 33-42.
    • (2010) Artif Intell Med , vol.49 , pp. 33-42
    • Delen, D.1    Oztekin, A.2    Kong, Z.J.3
  • 49
    • 20044369703 scopus 로고    scopus 로고
    • Validation of the EBMT risk score in chronic myeloid leukemia in Brazil and allogeneic transplant outcome
    • De Souza CA, Vigorito AC, Ruiz MA, Nucci M, Dulley FL, Funcke V et al. Validation of the EBMT risk score in chronic myeloid leukemia in Brazil and allogeneic transplant outcome. Haematologica 2005; 90: 232-237.
    • (2005) Haematologica , vol.90 , pp. 232-237
    • De Souza, C.A.1    Vigorito, A.C.2    Ruiz, M.A.3    Nucci, M.4    Dulley, F.L.5    Funcke, V.6
  • 50
    • 0032480589 scopus 로고    scopus 로고
    • Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation
    • Gratwohl A, Hermans J, Goldman JM, Arcese W, Carreras E, Devergie A et al. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet 1998; 352: 1087-1092.
    • (1998) Lancet , vol.352 , pp. 1087-1092
    • Gratwohl, A.1    Hermans, J.2    Goldman, J.M.3    Arcese, W.4    Carreras, E.5    Devergie, A.6
  • 51
    • 80054035323 scopus 로고    scopus 로고
    • Predictive impact of allele-matching and EBMT risk score for outcome after T-cell depleted unrelated donor transplantation in poor-risk acute leukemia and myelodysplasia
    • Lodewyck T, Oudshoorn M, van der Holt B, Petersen E, Spierings E, von dem Borne PA et al. Predictive impact of allele-matching and EBMT risk score for outcome after T-cell depleted unrelated donor transplantation in poor-risk acute leukemia and myelodysplasia. Leukemia 2011; 25: 1548-1554.
    • (2011) Leukemia , vol.25 , pp. 1548-1554
    • Lodewyck, T.1    Oudshoorn, M.2    Van Der Holt, B.3    Petersen, E.4    Spierings, E.5    Von Dem Borne, P.A.6
  • 52
    • 84856857935 scopus 로고    scopus 로고
    • Treatment, risk factors, and outcome of adults with relapsed AML after reduced intensity conditioning for allogeneic stem cell transplantation
    • Schmid C, Labopin M, Nagler A, Niederwieser D, Castagna L, Tabrizi R et al. Treatment, risk factors, and outcome of adults with relapsed AML after reduced intensity conditioning for allogeneic stem cell transplantation. Blood 2012; 119: 1599-1606.
    • (2012) Blood , vol.119 , pp. 1599-1606
    • Schmid, C.1    Labopin, M.2    Nagler, A.3    Niederwieser, D.4    Castagna, L.5    Tabrizi, R.6
  • 53
    • 42449142954 scopus 로고    scopus 로고
    • Hematopoietic cell transplantation-comorbidity index and Karnofsky performance status are independent predictors of morbidity and mortality after allogeneic nonmyeloablative hematopoietic cell transplantation
    • Sorror M, Storer B, Sandmaier BM, Maloney DG, Chauncey TR, Langston A et al. Hematopoietic cell transplantation-comorbidity index and Karnofsky performance status are independent predictors of morbidity and mortality after allogeneic nonmyeloablative hematopoietic cell transplantation. Cancer 2008; 112: 1992-2001.
    • (2008) Cancer , vol.112 , pp. 1992-2001
    • Sorror, M.1    Storer, B.2    Sandmaier, B.M.3    Maloney, D.G.4    Chauncey, T.R.5    Langston, A.6
  • 55
    • 0030285403 scopus 로고    scopus 로고
    • The KDD process for extracting useful knowledge from volumes of data
    • Fayyad U, Piatetsky-Shapiro G, Smyth P. The KDD process for extracting useful knowledge from volumes of data. Commun ACM 1996; 39: 27-34.
    • (1996) Commun ACM , vol.39 , pp. 27-34
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 56
    • 70350728384 scopus 로고    scopus 로고
    • Impact of censoring on learning Bayesian networks in survival modelling
    • Stajduhar I, Dalbelo-Basic B, Bogunovic N. Impact of censoring on learning Bayesian networks in survival modelling. Artif Intell Med 2009; 47: 199-217.
    • (2009) Artif Intell Med , vol.47 , pp. 199-217
    • Stajduhar, I.1    Dalbelo-Basic, B.2    Bogunovic, N.3
  • 58
    • 84880782749 scopus 로고    scopus 로고
    • Survival prediction and treatment recommendation with Bayesian techniques in lung cancer
    • Sesen MB, Kadir T, Alcantara RB, Fox J, Brady M. Survival prediction and treatment recommendation with Bayesian techniques in lung cancer. AMIA Annu Symp Proc 2012 838-847.
    • (2012) AMIA Annu Symp Proc , pp. 838-847
    • Sesen, M.B.1    Kadir, T.2    Alcantara, R.B.3    Fox, J.4    Brady, M.5
  • 59
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000; 19: 541-561.
    • (2000) Stat Med , vol.19 , pp. 541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.