-
1
-
-
33646119401
-
Hematopoietic stem-cell transplantation
-
Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med 2006; 354: 1813-1826.
-
(2006)
N Engl J Med
, vol.354
, pp. 1813-1826
-
-
Copelan, E.A.1
-
2
-
-
78649429727
-
Reduced mortality after allogeneic hematopoietic-cell transplantation
-
Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med 363: 2091-2101.
-
N Engl J Med
, vol.363
, pp. 2091-2101
-
-
Gooley, T.A.1
Chien, J.W.2
Pergam, S.A.3
Hingorani, S.4
Sorror, M.L.5
Boeckh, M.6
-
3
-
-
77955583042
-
How we approach patient evaluation for hematopoietic stem cell transplantation
-
Hamadani M, Craig M, Awan FT, Devine SM. How we approach patient evaluation for hematopoietic stem cell transplantation. Bone Marrow Transplant 45: 1259-1268.
-
Bone Marrow Transplant
, vol.45
, pp. 1259-1268
-
-
Hamadani, M.1
Craig, M.2
Awan, F.T.3
Devine, S.M.4
-
4
-
-
70350090181
-
Risk score for outcome after allogeneic hematopoietic stem cell transplantation: A retrospective analysis
-
Gratwohl A, Stern M, Brand R, Apperley J, Baldomero H, de Witte T et al. Risk score for outcome after allogeneic hematopoietic stem cell transplantation: a retrospective analysis. Cancer 2009; 115: 4715-4726.
-
(2009)
Cancer
, vol.115
, pp. 4715-4726
-
-
Gratwohl, A.1
Stern, M.2
Brand, R.3
Apperley, J.4
Baldomero, H.5
De Witte, T.6
-
5
-
-
33645643877
-
A risk score for mortality after allogeneic hematopoietic cell transplantation
-
Parimon T, Au DH, Martin PJ, Chien JW. A risk score for mortality after allogeneic hematopoietic cell transplantation. Ann Intern Med 2006; 144: 407-414.
-
(2006)
Ann Intern Med
, vol.144
, pp. 407-414
-
-
Parimon, T.1
Au, D.H.2
Martin, P.J.3
Chien, J.W.4
-
6
-
-
23944440464
-
Hema-topoietic cell transplantation (HCT)-specific comorbidity index: A new tool for risk assessment before allogeneic HCT
-
Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG et al. Hema-topoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 2005; 106: 2912-2919.
-
(2005)
Blood
, vol.106
, pp. 2912-2919
-
-
Sorror, M.L.1
Maris, M.B.2
Storb, R.3
Baron, F.4
Sandmaier, B.M.5
Maloney, D.G.6
-
7
-
-
0000245743
-
Statistical modeling: The two cultures (with comments and a rejoinder by the author)
-
Breiman L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat Sci 2001; 16: 199-231.
-
(2001)
Stat Sci
, vol.16
, pp. 199-231
-
-
Breiman, L.1
-
8
-
-
0034832960
-
Logistic regression in the medical literature: Standards for use and reporting, with particular attention to one medical domain
-
Bagley SC, White H, Golomb BA. Logistic regression in the medical literature: standards for use and reporting, with particular attention to one medical domain. J Clin Epidemiol 2001; 54: 979-985.
-
(2001)
J Clin Epidemiol
, vol.54
, pp. 979-985
-
-
Bagley, S.C.1
White, H.2
Golomb, B.A.3
-
9
-
-
0032367976
-
Data mining: Statistics and more?
-
Hand DJ. Data mining: statistics and more? Am Stat 1998; 52: 112-118.
-
(1998)
Am Stat
, vol.52
, pp. 112-118
-
-
Hand, D.J.1
-
10
-
-
0030221202
-
Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis
-
Sun GW, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol 1996; 49: 907-916.
-
(1996)
J Clin Epidemiol
, vol.49
, pp. 907-916
-
-
Sun, G.W.1
Shook, T.L.2
Kay, G.L.3
-
11
-
-
0030297904
-
Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
-
Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 1996; 49: 1225-1231.
-
(1996)
J Clin Epidemiol
, vol.49
, pp. 1225-1231
-
-
Tu, J.V.1
-
12
-
-
84861235431
-
Mining electronic health records: Towards better research applications and clinical care
-
Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 2012; 13: 395-405.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 395-405
-
-
Jensen, P.B.1
Jensen, L.J.2
Brunak, S.3
-
15
-
-
0002337827
-
Machine learning and data mining
-
Mitchell T. Machine learning and data mining. Commun ACM 1999; 42: 30-36.
-
(1999)
Commun ACM
, vol.42
, pp. 30-36
-
-
Mitchell, T.1
-
16
-
-
77950519462
-
Clinical data mining: A review
-
Iavindrasana J, Cohen G, Depeursinge A, Muller H, Meyer R, Geissbuhler A. Clinical data mining: a review. Yearb Med Inform 2009; 121-133.
-
(2009)
Yearb Med Inform
, pp. 121-133
-
-
Iavindrasana, J.1
Cohen, G.2
Depeursinge, A.3
Muller, H.4
Meyer, R.5
Geissbuhler, A.6
-
19
-
-
0034598746
-
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
-
Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503-511.
-
(2000)
Nature
, vol.403
, pp. 503-511
-
-
Alizadeh, A.A.1
Eisen, M.B.2
Davis, R.E.3
Ma, C.4
Lossos, I.S.5
Rosenwald, A.6
-
20
-
-
18244409933
-
Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
-
Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68-74.
-
(2002)
Nat Med
, vol.8
, pp. 68-74
-
-
Shipp, M.A.1
Ross, K.N.2
Tamayo, P.3
Weng, A.P.4
Kutok, J.L.5
Aguiar, R.C.6
-
22
-
-
0004042547
-
CRISP-DM 1.0: Step-by-step data mining guide
-
Chapman P, Clinton J, Kerber R, Khabaza T, Reinartz R, Shearer C et al. CRISP-DM 1.0: step-by-step data mining guide. CRISP-DM Consortium Tech Rep 2000.
-
(2000)
CRISP-DM Consortium Tech Rep
-
-
Chapman, P.1
Clinton, J.2
Kerber, R.3
Khabaza, T.4
Reinartz, R.5
Shearer, C.6
-
23
-
-
60049084145
-
Classification models for the prediction of cliniciansâht information needs
-
Del Fiol G, Haug PJ. Classification models for the prediction of cliniciansâht information needs. J Biomed Inform 2009; 42: 82.
-
(2009)
J Biomed Inform
, vol.42
, pp. 82
-
-
Del Fiol, G.1
Haug, P.J.2
-
24
-
-
0242410408
-
Benchmarking attribute selection techniques for discrete class data mining
-
Hall MA, Holmes G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans Knowledge Data Eng 2003; 15: 1437-1447.
-
(2003)
IEEE Trans Knowledge Data Eng
, vol.15
, pp. 1437-1447
-
-
Hall, M.A.1
Holmes, G.2
-
26
-
-
84865125394
-
Algorithm to determine the outcome of patients with acute liver failure: A data-mining analysis using decision trees
-
Nakayama N, Oketani M, Kawamura Y, Inao M, Nagoshi S, Fujiwara K et al. Algorithm to determine the outcome of patients with acute liver failure: a data-mining analysis using decision trees. J Gastroenterol 2012; 47: 664-677.
-
(2012)
J Gastroenterol
, vol.47
, pp. 664-677
-
-
Nakayama, N.1
Oketani, M.2
Kawamura, Y.3
Inao, M.4
Nagoshi, S.5
Fujiwara, K.6
-
27
-
-
84862207098
-
Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model
-
Takada M, Sugimoto M, Naito Y, Moon HG, Han W, Noh DY et al. Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model. BMC Med Inform Decis Mak 2012; 12: 54.
-
(2012)
BMC Med Inform Decis Mak
, vol.12
, pp. 54
-
-
Takada, M.1
Sugimoto, M.2
Naito, Y.3
Moon, H.G.4
Han, W.5
Noh, D.Y.6
-
28
-
-
84890074071
-
Iron-deficiency anemia detection from hematology parameters by using decision trees
-
Dogan S, Turkoglu I. Iron-deficiency anemia detection from hematology parameters by using decision trees. Int J Sci Technol 2008; 3: 85-92.
-
(2008)
Int J Sci Technol
, vol.3
, pp. 85-92
-
-
Dogan, S.1
Turkoglu, I.2
-
29
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn 2001; 45: 5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
30
-
-
38949126980
-
What are artificial neural networks?
-
Krogh A. What are artificial neural networks? Nat Biotechnol 2008; 26: 195-197.
-
(2008)
Nat Biotechnol
, vol.26
, pp. 195-197
-
-
Krogh, A.1
-
31
-
-
0031047117
-
Artificial neural networks improve the accuracy of cancer survival prediction
-
Burke HB, Goodman PH, Rosen DB, Henson DE, Weinstein JN, Harrell FE et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 1997; 79: 857-862.
-
(1997)
Cancer
, vol.79
, pp. 857-862
-
-
Burke, H.B.1
Goodman, P.H.2
Rosen, D.B.3
Henson, D.E.4
Weinstein, J.N.5
Harrell, F.E.6
-
32
-
-
20144387857
-
Prediction of survival in patients with esophageal carcinoma using artificial neural networks
-
Sato F, Shimada Y, Selaru FM, Shibata D, Maeda M, Watanabe G et al. Prediction of survival in patients with esophageal carcinoma using artificial neural networks. Cancer 2005; 103: 1596-1605.
-
(2005)
Cancer
, vol.103
, pp. 1596-1605
-
-
Sato, F.1
Shimada, Y.2
Selaru, F.M.3
Shibata, D.4
Maeda, M.5
Watanabe, G.6
-
33
-
-
0035871395
-
Comparison of artificial neural networks with other statistical approaches: Results from medical data sets
-
Sargent DJ. Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer 2001; 91: 1636-1642.
-
(2001)
Cancer
, vol.91
, pp. 1636-1642
-
-
Sargent, D.J.1
-
34
-
-
79551655286
-
Artificial neural networks accurately predict mortality in patients with nonvariceal upper GI bleeding
-
Rotondano G, Cipolletta L, Grossi E, Koch M, Intraligi M, Buscema M et al. Artificial neural networks accurately predict mortality in patients with nonvariceal upper GI bleeding. Gastrointest Endosc 2011; 73: 226 e1-2.
-
(2011)
Gastrointest Endosc
, vol.73
-
-
Rotondano, G.1
Cipolletta, L.2
Grossi, E.3
Koch, M.4
Intraligi, M.5
Buscema, M.6
-
35
-
-
33746901239
-
The use of artificial neural networks in decision support in cancer: A systematic review
-
Lisboa PJ, Taktak AF. The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 2006; 19: 408-415.
-
(2006)
Neural Netw
, vol.19
, pp. 408-415
-
-
Lisboa, P.J.1
Taktak, A.F.2
-
36
-
-
77951469347
-
Comparison between an artificial neural network and logistic regression in predicting acute graft-vs-host disease after unrelated donor hematopoietic stem cell transplantation in thalassemia patients
-
Caocci G, Baccoli R, Vacca A, Mastronuzzi A, Bertaina A, Piras E et al. Comparison between an artificial neural network and logistic regression in predicting acute graft-vs-host disease after unrelated donor hematopoietic stem cell transplantation in thalassemia patients. Exp Hematol 38: 426-433.
-
Exp Hematol
, vol.38
, pp. 426-433
-
-
Caocci, G.1
Baccoli, R.2
Vacca, A.3
Mastronuzzi, A.4
Bertaina, A.5
Piras, E.6
-
37
-
-
33845703344
-
What is a support vector machine?
-
Noble WS. What is a support vector machine? Nat Biotechnol 2006; 24: 1565-1567.
-
(2006)
Nat Biotechnol
, vol.24
, pp. 1565-1567
-
-
Noble, W.S.1
-
38
-
-
84860366215
-
Looking beyond historical patient outcomes to improve clinical models
-
Chia CC, Rubinfeld I, Scirica BM, McMillan S, Gurm HS, Syed Z. Looking beyond historical patient outcomes to improve clinical models. Sci Transl Med 4: 131ra49.
-
Sci Transl Med
, vol.4
-
-
Chia, C.C.1
Rubinfeld, I.2
Scirica, B.M.3
McMillan, S.4
Gurm, H.S.5
Syed, Z.6
-
40
-
-
0043166415
-
Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines
-
Lu C, Van Gestel T, Suykens JA, Van Huffel S, Vergote I, Timmerman D. Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines. Artif Intell Med 2003; 28: 281-306.
-
(2003)
Artif Intell Med
, vol.28
, pp. 281-306
-
-
Lu, C.1
Van Gestel, T.2
Suykens, J.A.3
Van Huffel, S.4
Vergote, I.5
Timmerman, D.6
-
41
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone M. Cross-validatory choice and assessment of statistical predictions. J Royal Stat Soc. Series B (Methodological) 1974 111-147.
-
(1974)
J Royal Stat Soc. Series B (Methodological)
, pp. 111-147
-
-
Stone, M.1
-
42
-
-
33646107181
-
Learning from imbalanced data in surveillance of nosocomial infection
-
Cohen G, Hilario M, Sax H, Hugonnet S, Geissbuhler A. Learning from imbalanced data in surveillance of nosocomial infection. Artif Intell Med 2006; 37: 7-18.
-
(2006)
Artif Intell Med
, vol.37
, pp. 7-18
-
-
Cohen, G.1
Hilario, M.2
Sax, H.3
Hugonnet, S.4
Geissbuhler, A.5
-
43
-
-
33644912316
-
Measuring diagnostic and predictive accuracy in disease management: An introduction to receiver operating characteristic (ROC) analysis
-
Linden A. Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract 2006; 12: 132-139.
-
(2006)
J Eval Clin Pract
, vol.12
, pp. 132-139
-
-
Linden, A.1
-
44
-
-
84872556902
-
Improved feature selection for hematopoietic cell transplantation outcome prediction using rank aggregation
-
2012 Federated Conference on 9-12 September
-
Sarkar C, Cooley S, Srivastava J. Improved feature selection for hematopoietic cell transplantation outcome prediction using rank aggregation. Computer Science and Information Systems (FedCSIS), 2012 Federated Conference on 9-12 September, 2012
-
(2012)
Computer Science and Information Systems (FedCSIS)
-
-
Sarkar, C.1
Cooley, S.2
Srivastava, J.3
-
45
-
-
84872556902
-
Improved feature selection for hematopoietic cell transplantation outcome prediction using rank aggregation
-
9-12 September
-
Improved feature selection for hematopoietic cell transplantation outcome prediction using rank aggregation. 2012 Federated Conference on Computer Science and Information Systems (FedCSIS); 9-12 September 2012.
-
(2012)
2012 Federated Conference on Computer Science and Information Systems (FedCSIS)
-
-
-
46
-
-
77957130052
-
Missing data imputation using statistical and machine learning methods in a real breast cancer problem
-
Jerez JM, Molina I, Garcia-Laencina PJ, Alba E, Ribelles N, Martin M et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med 2010; 50: 105-115.
-
(2010)
Artif Intell Med
, vol.50
, pp. 105-115
-
-
Jerez, J.M.1
Molina, I.2
Garcia-Laencina, P.J.3
Alba, E.4
Ribelles, N.5
Martin, M.6
-
47
-
-
84864609657
-
A clinical decision support tool to predict survival in cancer patients beyond 120 days after palliative chemotherapy
-
Ng T, Chew L, Yap CW. A clinical decision support tool to predict survival in cancer patients beyond 120 days after palliative chemotherapy. J Palliat Med 2012; 15: 863-869.
-
(2012)
J Palliat Med
, vol.15
, pp. 863-869
-
-
Ng, T.1
Chew, L.2
Yap, C.W.3
-
48
-
-
77951625860
-
A machine learning-based approach to prognostic analysis of thoracic transplantations
-
Delen D, Oztekin A, Kong ZJ. A machine learning-based approach to prognostic analysis of thoracic transplantations. Artif Intell Med 2010; 49: 33-42.
-
(2010)
Artif Intell Med
, vol.49
, pp. 33-42
-
-
Delen, D.1
Oztekin, A.2
Kong, Z.J.3
-
49
-
-
20044369703
-
Validation of the EBMT risk score in chronic myeloid leukemia in Brazil and allogeneic transplant outcome
-
De Souza CA, Vigorito AC, Ruiz MA, Nucci M, Dulley FL, Funcke V et al. Validation of the EBMT risk score in chronic myeloid leukemia in Brazil and allogeneic transplant outcome. Haematologica 2005; 90: 232-237.
-
(2005)
Haematologica
, vol.90
, pp. 232-237
-
-
De Souza, C.A.1
Vigorito, A.C.2
Ruiz, M.A.3
Nucci, M.4
Dulley, F.L.5
Funcke, V.6
-
50
-
-
0032480589
-
Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation
-
Gratwohl A, Hermans J, Goldman JM, Arcese W, Carreras E, Devergie A et al. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet 1998; 352: 1087-1092.
-
(1998)
Lancet
, vol.352
, pp. 1087-1092
-
-
Gratwohl, A.1
Hermans, J.2
Goldman, J.M.3
Arcese, W.4
Carreras, E.5
Devergie, A.6
-
51
-
-
80054035323
-
Predictive impact of allele-matching and EBMT risk score for outcome after T-cell depleted unrelated donor transplantation in poor-risk acute leukemia and myelodysplasia
-
Lodewyck T, Oudshoorn M, van der Holt B, Petersen E, Spierings E, von dem Borne PA et al. Predictive impact of allele-matching and EBMT risk score for outcome after T-cell depleted unrelated donor transplantation in poor-risk acute leukemia and myelodysplasia. Leukemia 2011; 25: 1548-1554.
-
(2011)
Leukemia
, vol.25
, pp. 1548-1554
-
-
Lodewyck, T.1
Oudshoorn, M.2
Van Der Holt, B.3
Petersen, E.4
Spierings, E.5
Von Dem Borne, P.A.6
-
52
-
-
84856857935
-
Treatment, risk factors, and outcome of adults with relapsed AML after reduced intensity conditioning for allogeneic stem cell transplantation
-
Schmid C, Labopin M, Nagler A, Niederwieser D, Castagna L, Tabrizi R et al. Treatment, risk factors, and outcome of adults with relapsed AML after reduced intensity conditioning for allogeneic stem cell transplantation. Blood 2012; 119: 1599-1606.
-
(2012)
Blood
, vol.119
, pp. 1599-1606
-
-
Schmid, C.1
Labopin, M.2
Nagler, A.3
Niederwieser, D.4
Castagna, L.5
Tabrizi, R.6
-
53
-
-
42449142954
-
Hematopoietic cell transplantation-comorbidity index and Karnofsky performance status are independent predictors of morbidity and mortality after allogeneic nonmyeloablative hematopoietic cell transplantation
-
Sorror M, Storer B, Sandmaier BM, Maloney DG, Chauncey TR, Langston A et al. Hematopoietic cell transplantation-comorbidity index and Karnofsky performance status are independent predictors of morbidity and mortality after allogeneic nonmyeloablative hematopoietic cell transplantation. Cancer 2008; 112: 1992-2001.
-
(2008)
Cancer
, vol.112
, pp. 1992-2001
-
-
Sorror, M.1
Storer, B.2
Sandmaier, B.M.3
Maloney, D.G.4
Chauncey, T.R.5
Langston, A.6
-
54
-
-
56249119849
-
Impact of comorbidity indexes on non-relapse mortality
-
Xhaard A, Porcher R, Chien JW, de Latour RP, Robin M, Ribaud P et al. Impact of comorbidity indexes on non-relapse mortality. Leukemia 2008; 22: 2062-2069.
-
(2008)
Leukemia
, vol.22
, pp. 2062-2069
-
-
Xhaard, A.1
Porcher, R.2
Chien, J.W.3
De Latour, R.P.4
Robin, M.5
Ribaud, P.6
-
55
-
-
0030285403
-
The KDD process for extracting useful knowledge from volumes of data
-
Fayyad U, Piatetsky-Shapiro G, Smyth P. The KDD process for extracting useful knowledge from volumes of data. Commun ACM 1996; 39: 27-34.
-
(1996)
Commun ACM
, vol.39
, pp. 27-34
-
-
Fayyad, U.1
Piatetsky-Shapiro, G.2
Smyth, P.3
-
56
-
-
70350728384
-
Impact of censoring on learning Bayesian networks in survival modelling
-
Stajduhar I, Dalbelo-Basic B, Bogunovic N. Impact of censoring on learning Bayesian networks in survival modelling. Artif Intell Med 2009; 47: 199-217.
-
(2009)
Artif Intell Med
, vol.47
, pp. 199-217
-
-
Stajduhar, I.1
Dalbelo-Basic, B.2
Bogunovic, N.3
-
57
-
-
33745466826
-
Survival ensembles
-
Hothorn T, Bahlmann P, Dudoit S, Molinaro A, Van Der Laan MJ. Survival ensembles. Biostatistics 2006; 7: 355-373.
-
(2006)
Biostatistics
, vol.7
, pp. 355-373
-
-
Hothorn, T.1
Bahlmann, P.2
Dudoit, S.3
Molinaro, A.4
Van Der Laan, M.J.5
-
58
-
-
84880782749
-
Survival prediction and treatment recommendation with Bayesian techniques in lung cancer
-
Sesen MB, Kadir T, Alcantara RB, Fox J, Brady M. Survival prediction and treatment recommendation with Bayesian techniques in lung cancer. AMIA Annu Symp Proc 2012 838-847.
-
(2012)
AMIA Annu Symp Proc
, pp. 838-847
-
-
Sesen, M.B.1
Kadir, T.2
Alcantara, R.B.3
Fox, J.4
Brady, M.5
-
59
-
-
0034728368
-
On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
-
Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000; 19: 541-561.
-
(2000)
Stat Med
, vol.19
, pp. 541-561
-
-
Schwarzer, G.1
Vach, W.2
Schumacher, M.3
|