-
1
-
-
30844440076
-
K-SVD and its non-negative variant for dictionary design
-
July
-
M. Aharon, M. Elad, and A. M. Bruckstein. K-SVD and its non-negative variant for dictionary design. In Proc. SPIE Conf. on Wavelets, volume 5914, pages 327-339, July 2005.
-
(2005)
Proc. SPIE Conf. on Wavelets
, vol.5914
, pp. 327-339
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.M.3
-
2
-
-
33750383209
-
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
-
DOI 10.1109/TSP.2006.881199
-
M. Aharon, M. Elad, and A. M. Bruckstein. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54 (11):4311-4322, Dec. 2006. (Pubitemid 44637761)
-
(2006)
IEEE Transactions on Signal Processing
, vol.54
, Issue.11
, pp. 4311-4322
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.3
-
3
-
-
84866637300
-
-
Sep.
-
Amazon Mechanical Turk, Sep. 2012. URL https://www.mturk.com/mturk/ welcome.
-
(2012)
Amazon Mechanical Turk
-
-
-
4
-
-
84867117736
-
How to grade a test without knowing the answers - A Bayesian graphical model for adaptive crowdsourcing and aptitude testing
-
June
-
Y. Bachrach, T. P. Minka, J. Guiver, and T. Graepel. How to grade a test without knowing the answers - a Bayesian graphical model for adaptive crowdsourcing and aptitude testing. In Proc. 29th Intl. Conf. on Machine Learning, pages 1183-1190, June 2012.
-
(2012)
Proc. 29th Intl. Conf. on Machine Learning
, pp. 1183-1190
-
-
Bachrach, Y.1
Minka, T.P.2
Guiver, J.3
Graepel, T.4
-
6
-
-
77954605151
-
The state of educational data mining in 2009: A review and future visions
-
Oct.
-
R. Baker and K. Yacef. The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1(1):3-17, Oct. 2009.
-
(2009)
Journal of Educational Data Mining
, vol.1
, Issue.1
, pp. 3-17
-
-
Baker, R.1
Yacef, K.2
-
7
-
-
33646031770
-
The Q-matrix method: Mining student response data for knowledge
-
July
-
T. Barnes. The Q-matrix method: Mining student response data for knowledge. In Proc. AAAI Workshop Educational Data Mining, July 2005.
-
(2005)
Proc. AAAI Workshop Educational Data Mining
-
-
Barnes, T.1
-
8
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
Mar.
-
A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Science, 2(1):183-202, Mar. 2009.
-
(2009)
SIAM Journal on Imaging Science
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
10
-
-
85084017056
-
Modelbased collaborative filtering analysis of student response data: Machine-learning item response theory
-
June
-
Y. Bergner, S. Droschler, G. Kortemeyer, S. Rayyan, D. Seaton, and D. Pritchard. Modelbased collaborative filtering analysis of student response data: Machine-learning item response theory. In Proc. 5th Intl. Conf. on Educational Data Mining, pages 95-102, June 2012.
-
(2012)
Proc. 5th Intl. Conf. on Educational Data Mining
, pp. 95-102
-
-
Bergner, Y.1
Droschler, S.2
Kortemeyer, G.3
Rayyan, S.4
Seaton, D.5
Pritchard, D.6
-
11
-
-
36249023228
-
The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems
-
DOI 10.1137/050644641
-
J. Bolte, A. Daniilidis, and A. Lewis. The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimization, 17(4):1205-1223, Dec. 2006. (Pubitemid 350121960)
-
(2006)
SIAM Journal on Optimization
, vol.17
, Issue.4
, pp. 1205-1223
-
-
Bolte, J.1
Daniilidis, A.2
Lewis, A.3
-
14
-
-
55349132734
-
On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations
-
Nov.
-
A. M. Bruckstein, M. Elad, and M. Zibulevsky. On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations. IEEE Transactions on Information Theory, 54(11):4813-4820, Nov. 2008.
-
(2008)
IEEE Transactions on Information Theory
, vol.54
, Issue.11
, pp. 4813-4820
-
-
Bruckstein, A.M.1
Elad, M.2
Zibulevsky, M.3
-
16
-
-
33645511208
-
A web-based Bayesian intelligent tutoring system for computer programming
-
Nov.
-
C. J. Butz, S. Hua, and R. B. Maguire. A web-based Bayesian intelligent tutoring system for computer programming. Web Intelligence and Agent Systems, 4(1):77-97, Nov. 2006.
-
(2006)
Web Intelligence and Agent Systems
, vol.4
, Issue.1
, pp. 77-97
-
-
Butz, C.J.1
Hua, S.2
Maguire, R.B.3
-
17
-
-
68649098057
-
Nonlinear sequential designs for logistic item response theory models with applications to computerized adaptive tests
-
June
-
H. Chang and Z. Ying. Nonlinear sequential designs for logistic item response theory models with applications to computerized adaptive tests. Annals of Statistics, 37(3):1466-1488, June 2009.
-
(2009)
Annals of Statistics
, vol.37
, Issue.3
, pp. 1466-1488
-
-
Chang, H.1
Ying, Z.2
-
18
-
-
0032131292
-
Atomic decomposition by basis pursuit
-
PII S1064827596304010
-
S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33-61, Mar. 1998. (Pubitemid 128689501)
-
(1998)
SIAM Journal of Scientific Computing
, vol.20
, Issue.1
, pp. 33-61
-
-
Chen, S.S.1
Donoho, D.L.2
Saunders, M.A.3
-
19
-
-
0040972586
-
On bounds for the normal integral
-
June
-
J. T. Chu. On bounds for the normal integral. IEEE Transactions on Signal Processing, 42 (1/2):263-265, June 1955.
-
(1955)
IEEE Transactions on Signal Processing
, vol.42
, Issue.1-2
, pp. 263-265
-
-
Chu, J.T.1
-
20
-
-
84857495687
-
Conditions for effectively deriving a Q-matrix from data with non-negative matrix factorization
-
July
-
M. Desmarais. Conditions for effectively deriving a Q-matrix from data with non-negative matrix factorization. In Proc. 4th Intl. Conf. on Educational Data Mining, pages 41-50, July 2011.
-
(2011)
Proc. 4th Intl. Conf. on Educational Data Mining
, pp. 41-50
-
-
Desmarais, M.1
-
21
-
-
84904161498
-
Khan academy: The world's free virtual school
-
Mar.
-
J. A. Dijksman and S. Khan. Khan Academy: the world's free virtual school. In APS Meeting Abstracts, page 14006, Mar. 2011.
-
(2011)
APS Meeting Abstracts
, pp. 14006
-
-
Dijksman, J.A.1
Khan, S.2
-
22
-
-
84904194919
-
-
ELEC 301, Rice University. May
-
ELEC 301, Rice University. Introduction to signals and systems, May 2011. URL http://dsp.rice.edu/courses/elec301.
-
(2011)
Introduction to Signals and Systems
-
-
-
24
-
-
33947379166
-
Stochastic determination of the intrinsic structure in Bayesian factor analysis
-
Statistical and Applied Mathematical Sciences Institute, June
-
E. Fokoue. Stochastic determination of the intrinsic structure in Bayesian factor analysis. Technical report, Statistical and Applied Mathematical Sciences Institute, June 2004.
-
(2004)
Technical Report
-
-
Fokoue, E.1
-
25
-
-
84904203819
-
A Bayesian infinite factor model for learning and content analytics
-
June
-
K. Fronczyk, A. E. Waters, M. Guindani, R. G. Baraniuk, and M. Vannucci. A Bayesian infinite factor model for learning and content analytics. Computational Statistics and Data Analysis, June 2013, submitted.
-
(2013)
Computational Statistics and Data Analysis
-
-
Fronczyk, K.1
Waters, A.E.2
Guindani, M.3
Baraniuk, R.G.4
Vannucci, M.5
-
28
-
-
0037202446
-
Generalized linear and generalized additive models in studies of species distributions: Setting the scene
-
DOI 10.1016/S0304-3800(02)00204-1, PII S0304380002002041
-
A. Guisan, T. C. Edwards Jr, and T. Hastie. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157 (2-3):89-100, Nov. 2002. (Pubitemid 35255408)
-
(2002)
Ecological Modelling
, vol.157
, Issue.2-3
, pp. 89-100
-
-
Guisan, A.1
Edwards Jr., T.C.2
Hastie, T.3
-
29
-
-
84864101718
-
A sparse factor-analytic probit model for congressional voting patterns
-
Aug.
-
P. R. Hahn, C. M. Carvalho, and J. G. Scott. A sparse factor-analytic probit model for congressional voting patterns. Journal of the Royal Statistical Society, 61(4):619-635, Aug. 2012.
-
(2012)
Journal of the Royal Statistical Society
, vol.61
, Issue.4
, pp. 619-635
-
-
Hahn, P.R.1
Carvalho, C.M.2
Scott, J.G.3
-
32
-
-
3042697346
-
Evaluating collaborative filtering recommender systems
-
Jan.
-
J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1):5-53, Jan. 2004.
-
(2004)
ACM Transactions on Information Systems
, vol.22
, Issue.1
, pp. 5-53
-
-
Herlocker, J.L.1
Konstan, J.A.2
Terveen, L.G.3
Riedl, J.T.4
-
35
-
-
22944460748
-
Spike and slab variable selection: Frequentist and bayesian strategies
-
DOI 10.1214/009053604000001147
-
H. Ishwaran and J. S. Rao. Spike and slab variable selection: frequentist and Bayesian strategies. Annals of Statistics, 33(2):730-773, Apr. 2005. (Pubitemid 41053721)
-
(2005)
Annals of Statistics
, vol.33
, Issue.2
, pp. 730-773
-
-
Ishwaran, H.1
Rao, J.S.2
-
36
-
-
84896689375
-
Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors
-
Apr.
-
L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk. Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Transaction on Info Theory, 59(4), Apr. 2013.
-
(2013)
IEEE Transaction on Info Theory
, vol.59
, Issue.4
-
-
Jacques, L.1
Laska, J.N.2
Boufounos, P.T.3
Baraniuk, R.G.4
-
38
-
-
0002441452
-
Intelligent tutoring goes to school in the big city
-
K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark. Intelligent tutoring goes to school in the big city. Intl. Journal of Artificial Intelligence in Education, 8(1):30-43, 1997.
-
(1997)
Intl. Journal of Artificial Intelligence in Education
, vol.8
, Issue.1
, pp. 30-43
-
-
Koedinger, K.R.1
Anderson, J.R.2
Hadley, W.H.3
Mark, M.A.4
-
40
-
-
82555183095
-
OrdRec: An ordinal model for predicting personalized item rating distributions
-
Oct.
-
Y. Koren and J. Sill. OrdRec: an ordinal model for predicting personalized item rating distributions. In Proc. of the 5th ACM Conf. on Recommender Systems, pages 117-124, Oct. 2011.
-
(2011)
Proc. of the 5th ACM Conf. on Recommender Systems
, pp. 117-124
-
-
Koren, Y.1
Sill, J.2
-
41
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Aug.
-
Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37, Aug. 2009.
-
(2009)
Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
44
-
-
39049092344
-
Web-based Bayesian tutoring system
-
DOI 10.1109/DSPWS.2006.265452, 4041045, 2006 IEEE 12th Digital Signal Processing Workshop and 4th IEEE Signal Processing Education Workshop
-
G. A. Krudysz, J. S. Li, and J. H. McClellan. Web-based Bayesian tutoring system. In 12th Digital Signal Processing Workshop - 4th Signal Processing Education Workshop, pages 129-134, Sep. 2006. (Pubitemid 351245940)
-
(2006)
2006 IEEE 12th Digital Signal Processing Workshop and 4th IEEE Signal Processing Education Workshop
, pp. 129-134
-
-
Krudysz, G.A.1
Li, J.S.2
McClellan, J.H.3
-
45
-
-
85084016806
-
Tag-aware ordinal sparse factor analysis for learning and content analytics
-
July
-
A. S. Lan, C. Studer, A. E. Waters, and R. G. Baraniuk. Tag-aware ordinal sparse factor analysis for learning and content analytics. In Proc. 6th Intl. Conf. on Educational Data Mining, pages 90-97, July 2013a.
-
(2013)
Proc. 6th Intl. Conf. on Educational Data Mining
, pp. 90-97
-
-
Lan, A.S.1
Studer, C.2
Waters, A.E.3
Baraniuk, R.G.4
-
46
-
-
85084012992
-
Joint topic modeling and factor analysis of textual information and graded response data
-
July
-
A. S. Lan, C. Studer, A. E. Waters, and R. G. Baraniuk. Joint topic modeling and factor analysis of textual information and graded response data. In Proc. 6th Intl. Conf. on Educational Data Mining, pages 324-325, July 2013b.
-
(2013)
Proc. 6th Intl. Conf. on Educational Data Mining
, pp. 324-325
-
-
Lan, A.S.1
Studer, C.2
Waters, A.E.3
Baraniuk, R.G.4
-
48
-
-
80051959023
-
Sparse logistic principal components analysis for binary data
-
Sept
-
S. Lee, J. Z. Huang, and J. Hu. Sparse logistic principal components analysis for binary data. Annals of Applied Statistics, 4(3):1579-1601, Sept. 2010.
-
(2010)
Annals of Applied Statistics
, vol.4
, Issue.3
, pp. 1579-1601
-
-
Lee, S.1
Huang, J.Z.2
Hu, J.3
-
50
-
-
0032615663
-
Understanding rasch measurement: Estimation methods for rasch measures
-
J. M. Linacre. Understanding Rasch measurement: Estimation methods for Rasch measures. Journal of Outcome Measurement, 3(4):382-405, 1999.
-
(1999)
Journal of Outcome Measurement
, vol.3
, Issue.4
, pp. 382-405
-
-
Linacre, J.M.1
-
51
-
-
0037252945
-
Amazon.com recommendations: Item-to-item collaborative filtering
-
Jan.
-
G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76-80, Jan. 2003.
-
(2003)
IEEE Internet Computing
, vol.7
, Issue.1
, pp. 76-80
-
-
Linden, G.1
Smith, B.2
York, J.3
-
54
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11:19-60, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 19-60
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
55
-
-
0034335623
-
A basis for multidimensional item response theory
-
June
-
R. P. McDonald. A basis for multidimensional item response theory. Applied Psychological Measurement, 247(2):99-114, June 2000.
-
(2000)
Applied Psychological Measurement
, vol.247
, Issue.2
, pp. 99-114
-
-
McDonald, R.P.1
-
56
-
-
77957834179
-
Uncovering transcriptional regulatory networks by sparse Bayesian factor model
-
Mar.
-
J. Meng, J. Zhang, Y. Qi, Y. Chen, and Y. Huang. Uncovering transcriptional regulatory networks by sparse Bayesian factor model. EURASIP Journal on Advances in Signal Processing, 2010(3):1-18, Mar. 2010.
-
(2010)
EURASIP Journal on Advances in Signal Processing
, vol.2010
, Issue.3
, pp. 1-18
-
-
Meng, J.1
Zhang, J.2
Qi, Y.3
Chen, Y.4
Huang, Y.5
-
57
-
-
21244446518
-
A comparison of numerical optimizers for logistic regression
-
T. P. Minka. A comparison of numerical optimizers for logistic regression. Technical report, 2003. http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.85.7017 &rep=rep1&type=pdf.
-
(2003)
Technical Report
-
-
Minka, T.P.1
-
59
-
-
85013620054
-
Looking ahead to select tutorial actions: A decision-theoretic approach
-
Dec.
-
R. C. Murray, K. Van Lehn, and J. Mostow. Looking ahead to select tutorial actions: A decision-theoretic approach. Intl. Journal of Artificial Intelligence in Education, 14(3-4): 235-278, Dec. 2004.
-
(2004)
Intl. Journal of Artificial Intelligence in Education
, vol.14
, Issue.3-4
, pp. 235-278
-
-
Murray, R.C.1
Van Lehn, K.2
Mostow, J.3
-
60
-
-
67651063011
-
Gradient methods for minimizing composite objective function
-
Université catholique de Louvain, Sep.
-
Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, Université catholique de Louvain, Sep. 2007.
-
(2007)
Technical Report
-
-
Nesterov, Y.1
-
61
-
-
0009284283
-
The axioms and principal results of classical test theory
-
Feb.
-
M. R. Norvick. The axioms and principal results of classical test theory. Journal of Mathematical Psychology, 3(1):1-18, Feb. 1966.
-
(1966)
Journal of Mathematical Psychology
, vol.3
, Issue.1
, pp. 1-18
-
-
Norvick, M.R.1
-
63
-
-
77954598690
-
Modeling individualization in a Bayesian networks implementation of knowledge tracing
-
Springer, June
-
Z. A. Pardos and N. T. Heffernan. Modeling individualization in a Bayesian networks implementation of knowledge tracing. In User Modeling, Adaptation, and Personalization, volume 6075, pages 255-266. Springer, June 2010.
-
(2010)
User Modeling, Adaptation, and Personalization
, vol.6075
, pp. 255-266
-
-
Pardos, Z.A.1
Heffernan, N.T.2
-
64
-
-
37249080278
-
Penalized logistic regression for detecting gene interactions
-
DOI 10.1093/biostatistics/kxm010
-
M. Y. Park and T. Hastie. Penalized logistic regression for detecting gene interactions. Biostatistics, 9(1):30-50, Jan. 2008. (Pubitemid 350274580)
-
(2008)
Biostatistics
, vol.9
, Issue.1
, pp. 30-50
-
-
Park, M.Y.1
Hastie, T.2
-
66
-
-
33947409985
-
Factor analysis for gene regulatory networks and transcription factor activity profiles
-
Feb.
-
I. Pournara and L. Wernisch. Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics, 8(1):61, Feb. 2007.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 61
-
-
Pournara, I.1
Wernisch, L.2
-
68
-
-
79959322300
-
Faster teaching by POMDP planning
-
June
-
A. N. Rafferty, E. Brunskill, T. L. Griffiths, and P. Shafto. Faster teaching by POMDP planning. In Proc. 15th Intl. Conf. on Artificial Intelligence in Education, pages 280-287, June 2011.
-
(2011)
Proc. 15th Intl. Conf. on Artificial Intelligence in Education
, pp. 280-287
-
-
Rafferty, A.N.1
Brunskill, E.2
Griffiths, T.L.3
Shafto, P.4
-
72
-
-
33845663518
-
Educational data mining: A survey from 1995 to 2005
-
DOI 10.1016/j.eswa.2006.04.005, PII S0957417406001266
-
C. Romero and S. Ventura. Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1):135-146, July 2007. (Pubitemid 44959924)
-
(2007)
Expert Systems with Applications
, vol.33
, Issue.1
, pp. 135-146
-
-
Romero, C.1
Ventura, S.2
-
73
-
-
67149090611
-
Bayesian non-negative matrix factorization
-
Mar.
-
M. N. Schmidt, O. Winther, and L. K. Hansen. Bayesian non-negative matrix factorization. In Independent Component Analysis and Signal Separation, volume 5441, pages 540-547, Mar. 2009.
-
(2009)
Independent Component Analysis and Signal Separation
, vol.5441
, pp. 540-547
-
-
Schmidt, M.N.1
Winther, O.2
Hansen, L.K.3
-
74
-
-
84904181249
-
Extracting student models for intelligent tutoring systems
-
July. STEMscopes. STEMscopes science education, Sep. 2012
-
J. C. Stamper, T. Barnes, and M. Croy. Extracting student models for intelligent tutoring systems. In Proc. National Conf. on Artificial Intelligence, volume 22, pages 113-147, July 2007. STEMscopes. STEMscopes science education, Sep. 2012. URL http://stemscopes.com/.
-
(2007)
Proc. National Conf. on Artificial Intelligence
, vol.22
, pp. 113-147
-
-
Stamper, J.C.1
Barnes, T.2
Croy, M.3
-
78
-
-
70350129444
-
Item selection in computerized classification testing
-
Oct.
-
N. A. Thompson. Item selection in computerized classification testing. Educational and Psychological Measurement, 69(5):778-793, Oct. 2009.
-
(2009)
Educational and Psychological Measurement
, vol.69
, Issue.5
, pp. 778-793
-
-
Thompson, N.A.1
-
79
-
-
0001224048
-
Sparse Bayesian Learning and the Relevance Vector Machine
-
DOI 10.1162/15324430152748236
-
M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001. (Pubitemid 33687203)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
80
-
-
85013576745
-
The andes physics tutoring system: Lessons learned
-
Sep.
-
K. Van Lehn, C. Lynch, K. Schulze, J. A. Shapiro, R. Shelby, L. Taylor, D. Treacy, A. Weinstein, and M. Wintersgill. The Andes physics tutoring system: Lessons learned. Intl. Journal of Artificial Intelligence in Education, 15(3):147-204, Sep. 2005.
-
(2005)
Intl. Journal of Artificial Intelligence in Education
, vol.15
, Issue.3
, pp. 147-204
-
-
Van Lehn, K.1
Lynch, C.2
Schulze, K.3
Shapiro, J.A.4
Shelby, R.5
Taylor, L.6
Treacy, D.7
Weinstein, A.8
Wintersgill, M.9
-
81
-
-
85084013026
-
Test size reduction for concept estimation
-
July
-
D. Vats, C. Studer, A. S. Lan, L. Carin, and R. G. Baraniuk. Test size reduction for concept estimation. In Proc. 6th Intl. Conf. on Educational Data Mining, pages 292-295, July 2013.
-
(2013)
Proc. 6th Intl. Conf. on Educational Data Mining
, pp. 292-295
-
-
Vats, D.1
Studer, C.2
Lan, A.S.3
Carin, L.4
Baraniuk, R.G.5
-
82
-
-
0242295767
-
Bayesian factor regression models in the "large p, small n" paradigm
-
Sep.
-
M. West. Bayesian factor regression models in the "large p, small n" paradigm. Bayesian Statistics, 7:723-732, Sep. 2003.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 723-732
-
-
West, M.1
-
84
-
-
84880714637
-
A block coordinate descent method for multi-convex optimization with applications to nonnegative tensor factorization and completion
-
Rice University CAAM, Sep.
-
Y. Xu and W. Yin. A block coordinate descent method for multi-convex optimization with applications to nonnegative tensor factorization and completion. Technical report, Rice University CAAM, Sep. 2012.
-
(2012)
Technical Report
-
-
Xu, Y.1
Yin, W.2
|