메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 1959-2008

Sparse factor analysis for learning and content analytics

Author keywords

Bayesian latent factor analysis; Factor analysis; Personalized learning; Sparse logistic regression; Sparse probit regression

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; FACTOR ANALYSIS; MULTIVARIANT ANALYSIS;

EID: 84904196866     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (129)

References (85)
  • 1
    • 30844440076 scopus 로고    scopus 로고
    • K-SVD and its non-negative variant for dictionary design
    • July
    • M. Aharon, M. Elad, and A. M. Bruckstein. K-SVD and its non-negative variant for dictionary design. In Proc. SPIE Conf. on Wavelets, volume 5914, pages 327-339, July 2005.
    • (2005) Proc. SPIE Conf. on Wavelets , vol.5914 , pp. 327-339
    • Aharon, M.1    Elad, M.2    Bruckstein, A.M.3
  • 2
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • DOI 10.1109/TSP.2006.881199
    • M. Aharon, M. Elad, and A. M. Bruckstein. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54 (11):4311-4322, Dec. 2006. (Pubitemid 44637761)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 3
    • 84866637300 scopus 로고    scopus 로고
    • Sep.
    • Amazon Mechanical Turk, Sep. 2012. URL https://www.mturk.com/mturk/ welcome.
    • (2012) Amazon Mechanical Turk
  • 4
    • 84867117736 scopus 로고    scopus 로고
    • How to grade a test without knowing the answers - A Bayesian graphical model for adaptive crowdsourcing and aptitude testing
    • June
    • Y. Bachrach, T. P. Minka, J. Guiver, and T. Graepel. How to grade a test without knowing the answers - a Bayesian graphical model for adaptive crowdsourcing and aptitude testing. In Proc. 29th Intl. Conf. on Machine Learning, pages 1183-1190, June 2012.
    • (2012) Proc. 29th Intl. Conf. on Machine Learning , pp. 1183-1190
    • Bachrach, Y.1    Minka, T.P.2    Guiver, J.3    Graepel, T.4
  • 6
    • 77954605151 scopus 로고    scopus 로고
    • The state of educational data mining in 2009: A review and future visions
    • Oct.
    • R. Baker and K. Yacef. The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1(1):3-17, Oct. 2009.
    • (2009) Journal of Educational Data Mining , vol.1 , Issue.1 , pp. 3-17
    • Baker, R.1    Yacef, K.2
  • 7
    • 33646031770 scopus 로고    scopus 로고
    • The Q-matrix method: Mining student response data for knowledge
    • July
    • T. Barnes. The Q-matrix method: Mining student response data for knowledge. In Proc. AAAI Workshop Educational Data Mining, July 2005.
    • (2005) Proc. AAAI Workshop Educational Data Mining
    • Barnes, T.1
  • 8
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Mar.
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Science, 2(1):183-202, Mar. 2009.
    • (2009) SIAM Journal on Imaging Science , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 11
    • 36249023228 scopus 로고    scopus 로고
    • The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems
    • DOI 10.1137/050644641
    • J. Bolte, A. Daniilidis, and A. Lewis. The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimization, 17(4):1205-1223, Dec. 2006. (Pubitemid 350121960)
    • (2006) SIAM Journal on Optimization , vol.17 , Issue.4 , pp. 1205-1223
    • Bolte, J.1    Daniilidis, A.2    Lewis, A.3
  • 14
    • 55349132734 scopus 로고    scopus 로고
    • On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations
    • Nov.
    • A. M. Bruckstein, M. Elad, and M. Zibulevsky. On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations. IEEE Transactions on Information Theory, 54(11):4813-4820, Nov. 2008.
    • (2008) IEEE Transactions on Information Theory , vol.54 , Issue.11 , pp. 4813-4820
    • Bruckstein, A.M.1    Elad, M.2    Zibulevsky, M.3
  • 16
    • 33645511208 scopus 로고    scopus 로고
    • A web-based Bayesian intelligent tutoring system for computer programming
    • Nov.
    • C. J. Butz, S. Hua, and R. B. Maguire. A web-based Bayesian intelligent tutoring system for computer programming. Web Intelligence and Agent Systems, 4(1):77-97, Nov. 2006.
    • (2006) Web Intelligence and Agent Systems , vol.4 , Issue.1 , pp. 77-97
    • Butz, C.J.1    Hua, S.2    Maguire, R.B.3
  • 17
    • 68649098057 scopus 로고    scopus 로고
    • Nonlinear sequential designs for logistic item response theory models with applications to computerized adaptive tests
    • June
    • H. Chang and Z. Ying. Nonlinear sequential designs for logistic item response theory models with applications to computerized adaptive tests. Annals of Statistics, 37(3):1466-1488, June 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.3 , pp. 1466-1488
    • Chang, H.1    Ying, Z.2
  • 19
    • 0040972586 scopus 로고
    • On bounds for the normal integral
    • June
    • J. T. Chu. On bounds for the normal integral. IEEE Transactions on Signal Processing, 42 (1/2):263-265, June 1955.
    • (1955) IEEE Transactions on Signal Processing , vol.42 , Issue.1-2 , pp. 263-265
    • Chu, J.T.1
  • 20
    • 84857495687 scopus 로고    scopus 로고
    • Conditions for effectively deriving a Q-matrix from data with non-negative matrix factorization
    • July
    • M. Desmarais. Conditions for effectively deriving a Q-matrix from data with non-negative matrix factorization. In Proc. 4th Intl. Conf. on Educational Data Mining, pages 41-50, July 2011.
    • (2011) Proc. 4th Intl. Conf. on Educational Data Mining , pp. 41-50
    • Desmarais, M.1
  • 21
    • 84904161498 scopus 로고    scopus 로고
    • Khan academy: The world's free virtual school
    • Mar.
    • J. A. Dijksman and S. Khan. Khan Academy: the world's free virtual school. In APS Meeting Abstracts, page 14006, Mar. 2011.
    • (2011) APS Meeting Abstracts , pp. 14006
    • Dijksman, J.A.1    Khan, S.2
  • 22
    • 84904194919 scopus 로고    scopus 로고
    • ELEC 301, Rice University. May
    • ELEC 301, Rice University. Introduction to signals and systems, May 2011. URL http://dsp.rice.edu/courses/elec301.
    • (2011) Introduction to Signals and Systems
  • 24
    • 33947379166 scopus 로고    scopus 로고
    • Stochastic determination of the intrinsic structure in Bayesian factor analysis
    • Statistical and Applied Mathematical Sciences Institute, June
    • E. Fokoue. Stochastic determination of the intrinsic structure in Bayesian factor analysis. Technical report, Statistical and Applied Mathematical Sciences Institute, June 2004.
    • (2004) Technical Report
    • Fokoue, E.1
  • 26
  • 28
    • 0037202446 scopus 로고    scopus 로고
    • Generalized linear and generalized additive models in studies of species distributions: Setting the scene
    • DOI 10.1016/S0304-3800(02)00204-1, PII S0304380002002041
    • A. Guisan, T. C. Edwards Jr, and T. Hastie. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157 (2-3):89-100, Nov. 2002. (Pubitemid 35255408)
    • (2002) Ecological Modelling , vol.157 , Issue.2-3 , pp. 89-100
    • Guisan, A.1    Edwards Jr., T.C.2    Hastie, T.3
  • 29
    • 84864101718 scopus 로고    scopus 로고
    • A sparse factor-analytic probit model for congressional voting patterns
    • Aug.
    • P. R. Hahn, C. M. Carvalho, and J. G. Scott. A sparse factor-analytic probit model for congressional voting patterns. Journal of the Royal Statistical Society, 61(4):619-635, Aug. 2012.
    • (2012) Journal of the Royal Statistical Society , vol.61 , Issue.4 , pp. 619-635
    • Hahn, P.R.1    Carvalho, C.M.2    Scott, J.G.3
  • 35
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: Frequentist and bayesian strategies
    • DOI 10.1214/009053604000001147
    • H. Ishwaran and J. S. Rao. Spike and slab variable selection: frequentist and Bayesian strategies. Annals of Statistics, 33(2):730-773, Apr. 2005. (Pubitemid 41053721)
    • (2005) Annals of Statistics , vol.33 , Issue.2 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 40
    • 82555183095 scopus 로고    scopus 로고
    • OrdRec: An ordinal model for predicting personalized item rating distributions
    • Oct.
    • Y. Koren and J. Sill. OrdRec: an ordinal model for predicting personalized item rating distributions. In Proc. of the 5th ACM Conf. on Recommender Systems, pages 117-124, Oct. 2011.
    • (2011) Proc. of the 5th ACM Conf. on Recommender Systems , pp. 117-124
    • Koren, Y.1    Sill, J.2
  • 41
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Aug.
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37, Aug. 2009.
    • (2009) Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 48
    • 80051959023 scopus 로고    scopus 로고
    • Sparse logistic principal components analysis for binary data
    • Sept
    • S. Lee, J. Z. Huang, and J. Hu. Sparse logistic principal components analysis for binary data. Annals of Applied Statistics, 4(3):1579-1601, Sept. 2010.
    • (2010) Annals of Applied Statistics , vol.4 , Issue.3 , pp. 1579-1601
    • Lee, S.1    Huang, J.Z.2    Hu, J.3
  • 50
    • 0032615663 scopus 로고    scopus 로고
    • Understanding rasch measurement: Estimation methods for rasch measures
    • J. M. Linacre. Understanding Rasch measurement: Estimation methods for Rasch measures. Journal of Outcome Measurement, 3(4):382-405, 1999.
    • (1999) Journal of Outcome Measurement , vol.3 , Issue.4 , pp. 382-405
    • Linacre, J.M.1
  • 51
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • Jan.
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76-80, Jan. 2003.
    • (2003) IEEE Internet Computing , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 55
    • 0034335623 scopus 로고    scopus 로고
    • A basis for multidimensional item response theory
    • June
    • R. P. McDonald. A basis for multidimensional item response theory. Applied Psychological Measurement, 247(2):99-114, June 2000.
    • (2000) Applied Psychological Measurement , vol.247 , Issue.2 , pp. 99-114
    • McDonald, R.P.1
  • 57
    • 21244446518 scopus 로고    scopus 로고
    • A comparison of numerical optimizers for logistic regression
    • T. P. Minka. A comparison of numerical optimizers for logistic regression. Technical report, 2003. http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.85.7017 &rep=rep1&type=pdf.
    • (2003) Technical Report
    • Minka, T.P.1
  • 60
    • 67651063011 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective function
    • Université catholique de Louvain, Sep.
    • Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, Université catholique de Louvain, Sep. 2007.
    • (2007) Technical Report
    • Nesterov, Y.1
  • 61
    • 0009284283 scopus 로고
    • The axioms and principal results of classical test theory
    • Feb.
    • M. R. Norvick. The axioms and principal results of classical test theory. Journal of Mathematical Psychology, 3(1):1-18, Feb. 1966.
    • (1966) Journal of Mathematical Psychology , vol.3 , Issue.1 , pp. 1-18
    • Norvick, M.R.1
  • 63
    • 77954598690 scopus 로고    scopus 로고
    • Modeling individualization in a Bayesian networks implementation of knowledge tracing
    • Springer, June
    • Z. A. Pardos and N. T. Heffernan. Modeling individualization in a Bayesian networks implementation of knowledge tracing. In User Modeling, Adaptation, and Personalization, volume 6075, pages 255-266. Springer, June 2010.
    • (2010) User Modeling, Adaptation, and Personalization , vol.6075 , pp. 255-266
    • Pardos, Z.A.1    Heffernan, N.T.2
  • 64
    • 37249080278 scopus 로고    scopus 로고
    • Penalized logistic regression for detecting gene interactions
    • DOI 10.1093/biostatistics/kxm010
    • M. Y. Park and T. Hastie. Penalized logistic regression for detecting gene interactions. Biostatistics, 9(1):30-50, Jan. 2008. (Pubitemid 350274580)
    • (2008) Biostatistics , vol.9 , Issue.1 , pp. 30-50
    • Park, M.Y.1    Hastie, T.2
  • 66
    • 33947409985 scopus 로고    scopus 로고
    • Factor analysis for gene regulatory networks and transcription factor activity profiles
    • Feb.
    • I. Pournara and L. Wernisch. Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics, 8(1):61, Feb. 2007.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 61
    • Pournara, I.1    Wernisch, L.2
  • 72
    • 33845663518 scopus 로고    scopus 로고
    • Educational data mining: A survey from 1995 to 2005
    • DOI 10.1016/j.eswa.2006.04.005, PII S0957417406001266
    • C. Romero and S. Ventura. Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1):135-146, July 2007. (Pubitemid 44959924)
    • (2007) Expert Systems with Applications , vol.33 , Issue.1 , pp. 135-146
    • Romero, C.1    Ventura, S.2
  • 74
    • 84904181249 scopus 로고    scopus 로고
    • Extracting student models for intelligent tutoring systems
    • July. STEMscopes. STEMscopes science education, Sep. 2012
    • J. C. Stamper, T. Barnes, and M. Croy. Extracting student models for intelligent tutoring systems. In Proc. National Conf. on Artificial Intelligence, volume 22, pages 113-147, July 2007. STEMscopes. STEMscopes science education, Sep. 2012. URL http://stemscopes.com/.
    • (2007) Proc. National Conf. on Artificial Intelligence , vol.22 , pp. 113-147
    • Stamper, J.C.1    Barnes, T.2    Croy, M.3
  • 78
    • 70350129444 scopus 로고    scopus 로고
    • Item selection in computerized classification testing
    • Oct.
    • N. A. Thompson. Item selection in computerized classification testing. Educational and Psychological Measurement, 69(5):778-793, Oct. 2009.
    • (2009) Educational and Psychological Measurement , vol.69 , Issue.5 , pp. 778-793
    • Thompson, N.A.1
  • 79
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • DOI 10.1162/15324430152748236
    • M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 82
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • Sep.
    • M. West. Bayesian factor regression models in the "large p, small n" paradigm. Bayesian Statistics, 7:723-732, Sep. 2003.
    • (2003) Bayesian Statistics , vol.7 , pp. 723-732
    • West, M.1
  • 84
    • 84880714637 scopus 로고    scopus 로고
    • A block coordinate descent method for multi-convex optimization with applications to nonnegative tensor factorization and completion
    • Rice University CAAM, Sep.
    • Y. Xu and W. Yin. A block coordinate descent method for multi-convex optimization with applications to nonnegative tensor factorization and completion. Technical report, Rice University CAAM, Sep. 2012.
    • (2012) Technical Report
    • Xu, Y.1    Yin, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.