-
1
-
-
54249110594
-
Mixed membership stochastic blockmodels
-
E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9:1981-2014, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1981-2014
-
-
Airoldi, E.M.1
Blei, D.M.2
Fienberg, S.E.3
Xing, E.P.4
-
2
-
-
68749121819
-
Sparse probabilistic projections
-
C. Archambeau and F. Bach. Sparse probabilistic projections. In NIPS. 2009.
-
(2009)
NIPS
-
-
Archambeau, C.1
Bach, F.2
-
4
-
-
77952811536
-
The horseshoe estimator for sparse signals
-
C. Carvalho, N. Poison, and J. Scott. The horseshoe estimator for sparse signals. Biometrika, 97(2), 2010.
-
(2010)
Biometrika
, vol.97
, Issue.2
-
-
Carvalho, C.1
Poison, N.2
Scott, J.3
-
5
-
-
62549125109
-
High-dimensional sparse factor modeling: Applications in gene expression genomics
-
C. M. Carvalho, J. Chang, J. E. Lucas, J. R. Nevins, Q. Wang, and M. West. High-dimensional sparse factor modeling: Applications in gene expression genomics. J. Am. Stat. Ass., 103(484):1438-1456, 2008.
-
(2008)
J. Am. Stat. Ass.
, vol.103
, Issue.484
, pp. 1438-1456
-
-
Carvalho, C.M.1
Chang, J.2
Lucas, J.E.3
Nevins, J.R.4
Wang, Q.5
West, M.6
-
6
-
-
84899014910
-
A generalization of principal components to the exponential family
-
M. Collins, S. Dasgupta, and R. Schapire. A generalization of principal components to the exponential family. In NIPS 14, pages 617-624, 2002.
-
(2002)
NIPS
, vol.14
, pp. 617-624
-
-
Collins, M.1
Dasgupta, S.2
Schapire, R.3
-
7
-
-
84879854573
-
A spike and slab restricted Boltzmann machine
-
A. Courville, J. Bergstra, and Y. Bengio. A spike and slab restricted Boltzmann machine. In AISTATS 14. 2010.
-
(2010)
AISTATS
, vol.14
-
-
Courville, A.1
Bergstra, J.2
Bengio, Y.3
-
10
-
-
34548625798
-
Infinite latent feature models and the Indian Buffet Process
-
T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian Buffet Process. In NIPS 19, 2006.
-
(2006)
NIPS
, vol.19
-
-
Griffiths, T.1
Ghahramani, Z.2
-
11
-
-
15944401042
-
Laplace expansions in Markov chain Monte Carlo algorithms
-
C. Guihenneuc-Jouyaux and J. Rousseau. Laplace expansions in Markov chain Monte Carlo algorithms. J. Comp. Grap. Stats, 14(1):pp. 75-94, 2005.
-
(2005)
J. Comp. Grap. Stats
, vol.14
, Issue.1
, pp. 75-94
-
-
Guihenneuc-Jouyaux, C.1
Rousseau, J.2
-
12
-
-
78049339967
-
Expectation propagation for Bayesian multi-task feature selection
-
D. Hernández Lobato, J. Hernández-Lobato, T. Helleputte, and P. Dupont. Expectation propagation for Bayesian multi-task feature selection. Machine Learning and Knowledge Discovery in Databases, pages 522-537, 2010.
-
(2010)
Machine Learning and Knowledge Discovery in Databases
, pp. 522-537
-
-
Hernández Lobato, D.1
Hernández-Lobato, J.2
Helleputte, T.3
Dupont, P.4
-
13
-
-
22944460748
-
Spike and Slab variable selection: Frequentist and Bayesian strategies
-
H. Ishwaran and J. S. Rao. Spike and Slab variable selection: Frequentist and Bayesian strategies. Annals of Statistics, 33(2):730-773, 2005.
-
(2005)
Annals of Statistics
, vol.33
, Issue.2
, pp. 730-773
-
-
Ishwaran, H.1
Rao, J.S.2
-
14
-
-
3543030265
-
Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences
-
I. M. Johnstone and B. W. Silverman. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences. Ann. Stat., 32(4):1594-1694, 2004.
-
(2004)
Ann. Stat.
, vol.32
, Issue.4
, pp. 1594-1694
-
-
Johnstone, I.M.1
Silverman, B.W.2
-
15
-
-
84867123998
-
ICA-based binary feature construction
-
A. Kaban and E. Bingham. ICA-based binary feature construction. In ICA 6, 2006.
-
(2006)
ICA
, vol.6
-
-
Kaban, A.1
Bingham, E.2
-
16
-
-
49449116296
-
The discovery of structural form
-
C. Kemp and J. B. Tenenbaum. The discovery of structural form. PNAS, 105(31):10687-10692, 2008.
-
(2008)
PNAS
, vol.105
, Issue.31
, pp. 10687-10692
-
-
Kemp, C.1
Tenenbaum, J.B.2
-
17
-
-
78751681286
-
Exponential family sparse coding with applications to self-taught learning
-
H. Lee, R. Raina, A. Teichman, and A. Y. Ng. Exponential family sparse coding with applications to self-taught learning. In IJCAI'09, pages 1113-1119, 2009.
-
(2009)
IJCAI'09
, pp. 1113-1119
-
-
Lee, H.1
Raina, R.2
Teichman, A.3
Ng, A.Y.4
-
18
-
-
34547966875
-
Efficient L1 regularized logistic regression
-
S. Lee, H. Lee, P. Abbeel, and A.Y. Ng. Efficient L1 regularized logistic regression. In AAAI-06. 2006.
-
(2006)
AAAI-06
-
-
Lee, S.1
Lee, H.2
Abbeel, P.3
Ng, A.Y.4
-
19
-
-
70450174344
-
Understanding and evaluating blind deconvolution algorithms
-
A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evaluating blind deconvolution algorithms. In CVPR, 2009.
-
(2009)
CVPR
-
-
Levin, A.1
Weiss, Y.2
Durand, F.3
Freeman, W.T.4
-
20
-
-
84867112867
-
Closed-form EM for sparse coding and its application to source separation
-
J. Lücke and A Sheikh. Closed-form EM for sparse coding and its application to source separation. In LVA/ICA, 2012.
-
(2012)
LVA/ICA
-
-
Lücke, J.1
Sheikh, A.2
-
24
-
-
1642370803
-
Slice sampling
-
R. M. Neal. Slice sampling. Ann. Stat., 31(3), 2003.
-
(2003)
Ann. Stat.
, vol.31
, Issue.3
-
-
Neal, R.M.1
-
25
-
-
69249230467
-
A review of Bayesian variable selections methods: What, how and which
-
R. B. O'Hara and M. J. Sillanpäa. A review of Bayesian variable selections methods: What, how and which. Bayesian Analysis, 4(1):85-118, 2009.
-
(2009)
Bayesian Analysis
, vol.4
, Issue.1
, pp. 85-118
-
-
O'Hara, R.B.1
Sillanpäa, M.J.2
-
26
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
June
-
B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607-609, June 1996.
-
(1996)
Nature
, vol.381
, Issue.6583
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
27
-
-
79957438558
-
Shrink globally, act locally: Sparse Bayesian regularization and prediction
-
N. G. Poison and J. G. Scott. Shrink globally, act locally: Sparse Bayesian regularization and prediction. In Bayesian Statistics, volume 9. 2010.
-
(2010)
Bayesian Statistics
, vol.9
-
-
Poison, N.G.1
Scott, J.G.2
-
29
-
-
70049118528
-
Fast optimization methods for L1 regularization: A comparative study and two new approaches
-
Springer
-
M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for L1 regularization: A comparative study and two new approaches. In ECML-2006. Springer, 2007.
-
(2007)
ECML-2006
-
-
Schmidt, M.1
Fung, G.2
Rosales, R.3
-
30
-
-
38049145045
-
Bayesian inference and optimal design in the sparse linear model
-
M. Seeger., F. Steinke, and K. Tsuda. Bayesian inference and optimal design in the sparse linear model. In AISTATS 11, pages 444-451, 2007.
-
(2007)
AISTATS
, vol.11
, pp. 444-451
-
-
Seeger, M.1
Steinke, F.2
Tsuda, K.3
-
31
-
-
85194972808
-
Regression shrinkage and selection via the LASSO
-
R. Tibshirani. Regression shrinkage and selection via the LASSO. JRSS B, 58(1):267-288, 1996.
-
(1996)
JRSS B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
32
-
-
77955054299
-
On the conditions used to prove oracle results for the Lasso
-
S. A. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for the Lasso. Electronic Journal of Statistics, 3:1360-1392, 2009.
-
(2009)
Electronic Journal of Statistics
, vol.3
, pp. 1360-1392
-
-
Van De Geer, S.A.1
Bühlmann, P.2
-
33
-
-
85161974668
-
A new view of automatic relevance determination
-
D. Wipf and S. Nagarajan. A new view of automatic relevance determination. In NIPS 20, 2008.
-
(2008)
NIPS
, vol.20
-
-
Wipf, D.1
Nagarajan, S.2
-
34
-
-
84860345321
-
A majorization-minimization approach to variable selection using spike and slab priors
-
T.J. Yen. A majorization-minimization approach to variable selection using spike and slab priors. The Annals of Statistics, 39(3):1748-1775, 2011.
-
(2011)
The Annals of Statistics
, vol.39
, Issue.3
, pp. 1748-1775
-
-
Yen, T.J.1
|