메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 751-758

Bayesian and L 1 approaches for sparse unsupervised learning

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN METHODS; BAYESIAN MODEL; COLLABORATIVE FILTERING; COMPUTATIONAL BUDGET; FACTOR MODEL; GENERALISATION; GENOMICS; LATENT VARIABLE MODELS; NUMBER OF DATUM; PREDICTIVE PERFORMANCE; REGULARISATION; SIGNAL ACQUISITIONS;

EID: 84867124105     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (36)

References (35)
  • 2
    • 68749121819 scopus 로고    scopus 로고
    • Sparse probabilistic projections
    • C. Archambeau and F. Bach. Sparse probabilistic projections. In NIPS. 2009.
    • (2009) NIPS
    • Archambeau, C.1    Bach, F.2
  • 4
    • 77952811536 scopus 로고    scopus 로고
    • The horseshoe estimator for sparse signals
    • C. Carvalho, N. Poison, and J. Scott. The horseshoe estimator for sparse signals. Biometrika, 97(2), 2010.
    • (2010) Biometrika , vol.97 , Issue.2
    • Carvalho, C.1    Poison, N.2    Scott, J.3
  • 5
    • 62549125109 scopus 로고    scopus 로고
    • High-dimensional sparse factor modeling: Applications in gene expression genomics
    • C. M. Carvalho, J. Chang, J. E. Lucas, J. R. Nevins, Q. Wang, and M. West. High-dimensional sparse factor modeling: Applications in gene expression genomics. J. Am. Stat. Ass., 103(484):1438-1456, 2008.
    • (2008) J. Am. Stat. Ass. , vol.103 , Issue.484 , pp. 1438-1456
    • Carvalho, C.M.1    Chang, J.2    Lucas, J.E.3    Nevins, J.R.4    Wang, Q.5    West, M.6
  • 6
    • 84899014910 scopus 로고    scopus 로고
    • A generalization of principal components to the exponential family
    • M. Collins, S. Dasgupta, and R. Schapire. A generalization of principal components to the exponential family. In NIPS 14, pages 617-624, 2002.
    • (2002) NIPS , vol.14 , pp. 617-624
    • Collins, M.1    Dasgupta, S.2    Schapire, R.3
  • 7
    • 84879854573 scopus 로고    scopus 로고
    • A spike and slab restricted Boltzmann machine
    • A. Courville, J. Bergstra, and Y. Bengio. A spike and slab restricted Boltzmann machine. In AISTATS 14. 2010.
    • (2010) AISTATS , vol.14
    • Courville, A.1    Bergstra, J.2    Bengio, Y.3
  • 8
    • 84898968483 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • A. d'Aspremont, L. El Ghaoui, M. I. Jordan, and G. R.G. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. In NIPS 17, 2005.
    • (2005) NIPS , vol.17
    • D'Aspremont, A.1    El Ghaoui, L.2    Jordan, M.I.3    Lanckriet, G.R.G.4
  • 10
    • 34548625798 scopus 로고    scopus 로고
    • Infinite latent feature models and the Indian Buffet Process
    • T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian Buffet Process. In NIPS 19, 2006.
    • (2006) NIPS , vol.19
    • Griffiths, T.1    Ghahramani, Z.2
  • 11
    • 15944401042 scopus 로고    scopus 로고
    • Laplace expansions in Markov chain Monte Carlo algorithms
    • C. Guihenneuc-Jouyaux and J. Rousseau. Laplace expansions in Markov chain Monte Carlo algorithms. J. Comp. Grap. Stats, 14(1):pp. 75-94, 2005.
    • (2005) J. Comp. Grap. Stats , vol.14 , Issue.1 , pp. 75-94
    • Guihenneuc-Jouyaux, C.1    Rousseau, J.2
  • 13
    • 22944460748 scopus 로고    scopus 로고
    • Spike and Slab variable selection: Frequentist and Bayesian strategies
    • H. Ishwaran and J. S. Rao. Spike and Slab variable selection: Frequentist and Bayesian strategies. Annals of Statistics, 33(2):730-773, 2005.
    • (2005) Annals of Statistics , vol.33 , Issue.2 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 14
    • 3543030265 scopus 로고    scopus 로고
    • Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences
    • I. M. Johnstone and B. W. Silverman. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences. Ann. Stat., 32(4):1594-1694, 2004.
    • (2004) Ann. Stat. , vol.32 , Issue.4 , pp. 1594-1694
    • Johnstone, I.M.1    Silverman, B.W.2
  • 15
    • 84867123998 scopus 로고    scopus 로고
    • ICA-based binary feature construction
    • A. Kaban and E. Bingham. ICA-based binary feature construction. In ICA 6, 2006.
    • (2006) ICA , vol.6
    • Kaban, A.1    Bingham, E.2
  • 16
    • 49449116296 scopus 로고    scopus 로고
    • The discovery of structural form
    • C. Kemp and J. B. Tenenbaum. The discovery of structural form. PNAS, 105(31):10687-10692, 2008.
    • (2008) PNAS , vol.105 , Issue.31 , pp. 10687-10692
    • Kemp, C.1    Tenenbaum, J.B.2
  • 17
    • 78751681286 scopus 로고    scopus 로고
    • Exponential family sparse coding with applications to self-taught learning
    • H. Lee, R. Raina, A. Teichman, and A. Y. Ng. Exponential family sparse coding with applications to self-taught learning. In IJCAI'09, pages 1113-1119, 2009.
    • (2009) IJCAI'09 , pp. 1113-1119
    • Lee, H.1    Raina, R.2    Teichman, A.3    Ng, A.Y.4
  • 18
    • 34547966875 scopus 로고    scopus 로고
    • Efficient L1 regularized logistic regression
    • S. Lee, H. Lee, P. Abbeel, and A.Y. Ng. Efficient L1 regularized logistic regression. In AAAI-06. 2006.
    • (2006) AAAI-06
    • Lee, S.1    Lee, H.2    Abbeel, P.3    Ng, A.Y.4
  • 19
    • 70450174344 scopus 로고    scopus 로고
    • Understanding and evaluating blind deconvolution algorithms
    • A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evaluating blind deconvolution algorithms. In CVPR, 2009.
    • (2009) CVPR
    • Levin, A.1    Weiss, Y.2    Durand, F.3    Freeman, W.T.4
  • 20
    • 84867112867 scopus 로고    scopus 로고
    • Closed-form EM for sparse coding and its application to source separation
    • J. Lücke and A Sheikh. Closed-form EM for sparse coding and its application to source separation. In LVA/ICA, 2012.
    • (2012) LVA/ICA
    • Lücke, J.1    Sheikh, A.2
  • 24
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • R. M. Neal. Slice sampling. Ann. Stat., 31(3), 2003.
    • (2003) Ann. Stat. , vol.31 , Issue.3
    • Neal, R.M.1
  • 25
    • 69249230467 scopus 로고    scopus 로고
    • A review of Bayesian variable selections methods: What, how and which
    • R. B. O'Hara and M. J. Sillanpäa. A review of Bayesian variable selections methods: What, how and which. Bayesian Analysis, 4(1):85-118, 2009.
    • (2009) Bayesian Analysis , vol.4 , Issue.1 , pp. 85-118
    • O'Hara, R.B.1    Sillanpäa, M.J.2
  • 26
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • June
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607-609, June 1996.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 27
    • 79957438558 scopus 로고    scopus 로고
    • Shrink globally, act locally: Sparse Bayesian regularization and prediction
    • N. G. Poison and J. G. Scott. Shrink globally, act locally: Sparse Bayesian regularization and prediction. In Bayesian Statistics, volume 9. 2010.
    • (2010) Bayesian Statistics , vol.9
    • Poison, N.G.1    Scott, J.G.2
  • 29
    • 70049118528 scopus 로고    scopus 로고
    • Fast optimization methods for L1 regularization: A comparative study and two new approaches
    • Springer
    • M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for L1 regularization: A comparative study and two new approaches. In ECML-2006. Springer, 2007.
    • (2007) ECML-2006
    • Schmidt, M.1    Fung, G.2    Rosales, R.3
  • 30
    • 38049145045 scopus 로고    scopus 로고
    • Bayesian inference and optimal design in the sparse linear model
    • M. Seeger., F. Steinke, and K. Tsuda. Bayesian inference and optimal design in the sparse linear model. In AISTATS 11, pages 444-451, 2007.
    • (2007) AISTATS , vol.11 , pp. 444-451
    • Seeger, M.1    Steinke, F.2    Tsuda, K.3
  • 31
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • R. Tibshirani. Regression shrinkage and selection via the LASSO. JRSS B, 58(1):267-288, 1996.
    • (1996) JRSS B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 32
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the Lasso
    • S. A. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for the Lasso. Electronic Journal of Statistics, 3:1360-1392, 2009.
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 1360-1392
    • Van De Geer, S.A.1    Bühlmann, P.2
  • 33
    • 85161974668 scopus 로고    scopus 로고
    • A new view of automatic relevance determination
    • D. Wipf and S. Nagarajan. A new view of automatic relevance determination. In NIPS 20, 2008.
    • (2008) NIPS , vol.20
    • Wipf, D.1    Nagarajan, S.2
  • 34
    • 84860345321 scopus 로고    scopus 로고
    • A majorization-minimization approach to variable selection using spike and slab priors
    • T.J. Yen. A majorization-minimization approach to variable selection using spike and slab priors. The Annals of Statistics, 39(3):1748-1775, 2011.
    • (2011) The Annals of Statistics , vol.39 , Issue.3 , pp. 1748-1775
    • Yen, T.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.