-
1
-
-
0019304735
-
The effect of 6 weeks of overfeeding on the body weight, body composition, and energy metabolism of young men
-
Norgan NG, Durnin JV. The effect of 6 weeks of overfeeding on the body weight, body composition, and energy metabolism of young men. Am J Clin Nutr. 1980;33:978-988. (Pubitemid 10040629)
-
(1980)
American Journal of Clinical Nutrition
, vol.33
, Issue.5
, pp. 978-988
-
-
Norgan, N.G.1
Durnin, J.V.G.A.2
-
2
-
-
0025292829
-
The response to long-term overfeeding in identical twins
-
Bouchard C, Tremblay A, Després JP, et al. The response to long-term overfeeding in identical twins. N Engl J Med. 1990;322:1477-1482. (Pubitemid 20179860)
-
(1990)
New England Journal of Medicine
, vol.322
, Issue.21
, pp. 1477-1482
-
-
Bouchard, C.1
Tremblay, A.2
Despres, J.-P.3
Nadeau, A.4
Lupien, P.J.5
Theriault, G.6
Dussault, J.7
Moorjani, S.8
Pinault, S.9
Fournier, G.10
-
3
-
-
0026437793
-
Overfeeding and energy expenditure in humans
-
Tremblay A, Després JP, Thériault G, Fournier G, Bouchard C. Overfeeding and energy expenditure in humans. Am J Clin Nutr. 1992;56:857-862.
-
(1992)
Am J Clin Nutr
, vol.56
, pp. 857-862
-
-
Tremblay, A.1
Després, J.P.2
Thériault, G.3
Fournier, G.4
Bouchard, C.5
-
4
-
-
0029031491
-
Fat and carbohydrate overfeeding in humans: Different effects on energy storage
-
Horton TJ, Drougas H, Brachey A, Reed GW, Peters JC, Hill JO. Fat and carbohydrate overfeeding in humans: different effects on energy storage. Am J Clin Nutr. 1995;62:19-29.
-
(1995)
Am J Clin Nutr
, vol.62
, pp. 19-29
-
-
Horton, T.J.1
Drougas, H.2
Brachey, A.3
Reed, G.W.4
Peters, J.C.5
Hill, J.O.6
-
5
-
-
0026738226
-
Metabolic response to experimental overfeeding in lean and overweight healthy volunteers
-
Diaz EO, Prentice AM, Goldberg GR, Murgatroyd PR, Coward WA. Metabolic response to experimental overfeeding in lean and overweight healthy volunteers. Am J Clin Nutr. 1992;56:641-655.
-
(1992)
Am J Clin Nutr
, vol.56
, pp. 641-655
-
-
Diaz, E.O.1
Prentice, A.M.2
Goldberg, G.R.3
Murgatroyd, P.R.4
Coward, W.A.5
-
6
-
-
58149373769
-
Changes in the transcriptome of abdominal subcutaneous adipose tissue in response to short-term overfeeding in lean and obese men
-
Shea J, French CR, Bishop J, et al. Changes in the transcriptome of abdominal subcutaneous adipose tissue in response to short-term overfeeding in lean and obese men. Am J Clin Nutr. 2009;89:407-415.
-
(2009)
Am J Clin Nutr
, vol.89
, pp. 407-415
-
-
Shea, J.1
French, C.R.2
Bishop, J.3
-
7
-
-
79951717899
-
Identification of adipocyte genes regulated by caloric intake
-
Franck N, Gummesson A, Jernås M, et al. Identification of adipocyte genes regulated by caloric intake. J Clin Endocrinol Metab. 2011;96:E413-E418.
-
(2011)
J Clin Endocrinol Metab
, vol.96
-
-
Franck, N.1
Gummesson, A.2
Jernås, M.3
-
8
-
-
84856800853
-
Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans
-
Alligier M, Meugnier E, Debard C, et al. Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. J Clin Endocrinol Metab. 2012;97:E183-E192.
-
(2012)
J Clin Endocrinol Metab
, vol.97
-
-
Alligier, M.1
Meugnier, E.2
Debard, C.3
-
9
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
DOI 10.1016/S0092-8674(00)80611-X
-
Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115-124. (Pubitemid 29331201)
-
(1999)
Cell
, vol.98
, Issue.1
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
Zhang, C.4
Adelmant, G.5
Mootha, V.6
Troy, A.7
Cinti, S.8
Lowell, B.9
Scarpulla, R.C.10
Spiegelman, B.M.11
-
10
-
-
0037326196
-
Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator
-
DOI 10.1210/er.2002-0012
-
Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24:78-90. (Pubitemid 36223280)
-
(2003)
Endocrine Reviews
, vol.24
, Issue.1
, pp. 78-90
-
-
Puigserver, P.1
Spiegelman, B.M.2
-
11
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
-
DOI 10.1038/nature03354
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature. 2005;434:113-118. (Pubitemid 40349395)
-
(2005)
Nature
, vol.434
, Issue.7029
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
12
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α
-
DOI 10.1038/sj.emboj.7601633, PII 7601633
-
Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 2007;26:1913-1923. (Pubitemid 46624046)
-
(2007)
EMBO Journal
, vol.26
, Issue.7
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.-H.5
Mostoslavsky, R.6
Alt, F.W.7
Wu, Z.8
Puigserver, P.9
-
13
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Cantó, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
-
14
-
-
83455206803
-
Targeting sirtuin 1 to improve metabolism: All you need is NAD(+)?
-
Cantó C, Auwerx J. Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)? Pharmacol Rev. 2012;64:166-187.
-
(2012)
Pharmacol Rev
, vol.64
, pp. 166-187
-
-
Cantó, C.1
Auwerx, J.2
-
15
-
-
77955434383
-
Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1α pathway
-
Chau MDL, Gao J, Yang Q, Wu Z, Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1α pathway. Proc Natl Acad Sci USA. 2010;107:12553-12558.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 12553-12558
-
-
Chau, M.D.L.1
Gao, J.2
Yang, Q.3
Wu, Z.4
Gromada, J.5
-
16
-
-
84873671542
-
Visceral fat accumulation during lipid overfeeding is related to subcutaneous adipose tissue characteristics in healthy men
-
Alligier M, Gabert L, Meugnier E, et al. Visceral fat accumulation during lipid overfeeding is related to subcutaneous adipose tissue characteristics in healthy men. J Clin Endocrinol Metab. 2013;98:802-810.
-
(2013)
J Clin Endocrinol Metab
, vol.98
, pp. 802-810
-
-
Alligier, M.1
Gabert, L.2
Meugnier, E.3
-
17
-
-
38049093993
-
Changes in gene expression in skeletal muscle in response to fat overfeeding in lean men
-
Meugnier E, Bossu C, Oliel M, et al. Changes in gene expression in skeletal muscle in response to fat overfeeding in lean men. Obesity (Silver Spring). 2007;15:2583-2594.
-
(2007)
Obesity (Silver Spring)
, vol.15
, pp. 2583-2594
-
-
Meugnier, E.1
Bossu, C.2
Oliel, M.3
-
18
-
-
84873267664
-
An isocaloric increase of eating episodes in the morning contributes to decrease energy intake at lunch in lean men
-
Allirot X, Saulais L, Seyssel K, et al. An isocaloric increase of eating episodes in the morning contributes to decrease energy intake at lunch in lean men. Physiol Behav. 2013;110-111:169-178.
-
(2013)
Physiol Behav
, vol.110-111
, pp. 169-178
-
-
Allirot, X.1
Saulais, L.2
Seyssel, K.3
-
19
-
-
0030037364
-
Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle
-
Laville M, Auboeuf D, Khalfallah Y, Vega N, Riou JP, Vidal H. Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle. J Clin Invest. 1996;98:43-49. (Pubitemid 26243819)
-
(1996)
Journal of Clinical Investigation
, vol.98
, Issue.1
, pp. 43-49
-
-
Laville, M.1
Auboeuf, D.2
Khalfallah, Y.3
Vega, N.4
Riou, J.P.5
Vidal, H.6
-
20
-
-
1342288026
-
Affy - Analysis of Affymetrix GeneChip data at the probe level
-
DOI 10.1093/bioinformatics/btg405
-
Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy - analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307-315. (Pubitemid 38262761)
-
(2004)
Bioinformatics
, vol.20
, Issue.3
, pp. 307-315
-
-
Gautier, L.1
Cope, L.2
Bolstad, B.M.3
Irizarry, R.A.4
-
21
-
-
4544341015
-
Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
-
Article3
-
Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3.
-
(2004)
Stat Appl Genet Mol Biol
, vol.3
-
-
Smyth, G.K.1
-
22
-
-
27344435774
-
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
-
DOI 10.1073/pnas.0506580102
-
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005;102:15545-15550. (Pubitemid 41528093)
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.43
, pp. 15545-15550
-
-
Subramanian, A.1
Tamayo, P.2
Mootha, V.K.3
Mukherjee, S.4
Ebert, B.L.5
Gillette, M.A.6
Paulovich, A.7
Pomeroy, S.L.8
Golub, T.R.9
Lander, E.S.10
Mesirov, J.P.11
-
23
-
-
58549112996
-
Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists
-
Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1-13.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 1-13
-
-
Huang, D.W.1
Sherman, B.T.2
Lempicki, R.A.3
-
24
-
-
7344262506
-
Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo
-
Saks VA, Veksler VI, Kuznetsov AV, et al. Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem. 1998;184:81-100. (Pubitemid 28398602)
-
(1998)
Molecular and Cellular Biochemistry
, vol.184
, Issue.1-2
, pp. 81-100
-
-
Saks, V.A.1
Veksler, V.I.2
Kuznetsov, A.V.3
Kay, L.4
Sikk, P.5
Tiivel, T.6
Tranqui, L.7
Olivares, J.8
Winkler, K.9
Wiedemann, F.10
Kunz, W.S.11
-
25
-
-
38849199866
-
Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice
-
DOI 10.1172/JCI32601
-
Bonnard C, Durand A, Peyrol S, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. 2008;118:789-800. (Pubitemid 351206566)
-
(2008)
Journal of Clinical Investigation
, vol.118
, Issue.2
, pp. 789-800
-
-
Bonnard, C.1
Durand, A.2
Peyrol, S.3
Chanseaume, E.4
Chauvin, M.-A.5
Morio, B.6
Vidal, H.7
Rieusset, J.8
-
26
-
-
0346158376
-
Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation
-
Holness MJ, Sugden MC. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. 2003;31:1143-1151. (Pubitemid 38030927)
-
(2003)
Biochemical Society Transactions
, vol.31
, Issue.6
, pp. 1143-1151
-
-
Holness, M.J.1
Sugden, M.C.2
-
28
-
-
2942724616
-
Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise
-
DOI 10.1079/PNS2004345
-
Pilegaard H, Neufer PD. Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise. Proc Nutr Soc. 2004;63:221-226. (Pubitemid 38787469)
-
(2004)
Proceedings of the Nutrition Society
, vol.63
, Issue.2
, pp. 221-226
-
-
Pilegaard, H.1
Neufer, P.D.2
-
29
-
-
28544438180
-
PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: A mechanism for transcriptional control of muscle glucose metabolism
-
DOI 10.1128/MCB.25.24.10684-10694.2005
-
Wende AR, Huss JM, Schaeffer PJ, Giguère V, Kelly DP. PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol. 2005;25:10684-10694. (Pubitemid 41747115)
-
(2005)
Molecular and Cellular Biology
, vol.25
, Issue.24
, pp. 10684-10694
-
-
Wende, A.R.1
Huss, J.M.2
Schaeffer, P.J.3
Giguere, V.4
Kelly, D.P.5
-
30
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9:327-338.
-
(2009)
Cell Metab
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
31
-
-
0029067962
-
The mitochondrial carnitine palmitoyltransferase system: Its broadening role in fuel homoeostasis and new insights into its molecular features
-
McGarry JD. The mitochondrial carnitine palmitoyltransferase system: its broadening role in fuel homoeostasis and new insights into its molecular features. Biochem Soc Trans. 1995;23:321-324.
-
(1995)
Biochem Soc Trans
, vol.23
, pp. 321-324
-
-
McGarry, J.D.1
-
32
-
-
21344444333
-
A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle
-
DOI 10.2337/diabetes.54.7.1926
-
Sparks LM, Xie H, Koza RA, et al. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes. 2005;54:1926-1933. (Pubitemid 40911253)
-
(2005)
Diabetes
, vol.54
, Issue.7
, pp. 1926-1933
-
-
Sparks, L.M.1
Xie, H.2
Koza, R.A.3
Mynatt, R.4
Hulver, M.W.5
Bray, G.A.6
Smith, S.R.7
-
33
-
-
79959635928
-
Separation of the gluconeogenic and mitochondrial functions of PGC-1α through S6 kinase
-
Lustig Y, Ruas JL, Estall JL, et al. Separation of the gluconeogenic and mitochondrial functions of PGC-1α through S6 kinase. Genes Dev. 2011;25:1232-1244.
-
(2011)
Genes Dev
, vol.25
, pp. 1232-1244
-
-
Lustig, Y.1
Ruas, J.L.2
Estall, J.L.3
-
34
-
-
84860641172
-
Overfeeding reduces insulin sensitivity and increases oxidative stress, without altering markers of mitochondrial content and function in humans
-
Samocha-Bonet D, Campbell LV, Mori TA, et al. Overfeeding reduces insulin sensitivity and increases oxidative stress, without altering markers of mitochondrial content and function in humans. PLoS One. 2012;7:e36320.
-
(2012)
PLoS One
, vol.7
-
-
Samocha-Bonet, D.1
Campbell, L.V.2
Mori, T.A.3
|