메뉴 건너뛰기




Volumn 8, Issue 4, 2013, Pages 591-602

Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs

Author keywords

bioprinting; hydrogel; laser biofabrication; nanobiomaterial; nanofiber

Indexed keywords

CARBON NANOTUBE; METAL NANOPARTICLE; MOLECULAR SCAFFOLD; NANOCOMPOSITE; NANOCRYSTAL; NANOFIBER; NANOFILM; NANOMATERIAL; ORGANICALLY MODIFIED CERAMIC; POLYANILINE; POLYGLACTIN; SILVER NANOPARTICLE;

EID: 84875940912     PISSN: 17435889     EISSN: 17486963     Source Type: Journal    
DOI: 10.2217/nnm.13.46     Document Type: Review
Times cited : (39)

References (96)
  • 1
    • 0027595948 scopus 로고
    • Tissue engineering
    • Langer R, Vacanti JP. Tissue engineering. Science 260(5110), 920-926 (1993). (Pubitemid 23209960)
    • (1993) Science , vol.260 , Issue.5110 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 2
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30), 5910-5917 (2009).
    • (2009) Biomaterials , vol.30 , Issue.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 3
    • 79957733029 scopus 로고    scopus 로고
    • Nanobiomaterials: State of the art and future trends
    • Yang L, Zhang L, Webster TJ. Nanobiomaterials: state of the art and future trends. Adv. Eng. Mater. 13(6), B197-B217 (2011).
    • (2011) Adv. Eng. Mater. , vol.13 , Issue.6
    • Yang, L.1    Zhang, L.2    Webster, T.J.3
  • 4
    • 2342428707 scopus 로고    scopus 로고
    • Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering
    • DOI 10.1016/j.biomaterials.2003.12.005, PII S0142961203011542
    • Wei GB, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19), 4749-4757 (2004). (Pubitemid 38561162)
    • (2004) Biomaterials , vol.25 , Issue.19 , pp. 4749-4757
    • Wei, G.1    Ma, P.X.2
  • 5
    • 0242607105 scopus 로고    scopus 로고
    • Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering
    • DOI 10.1016/S0142-9612(03)00593-3
    • Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanotibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25(5), 877-886 (2004). (Pubitemid 37371995)
    • (2004) Biomaterials , vol.25 , Issue.5 , pp. 877-886
    • Xu, C.Y.1    Inai, R.2    Kotaki, M.3    Ramakrishna, S.4
  • 6
    • 78049465739 scopus 로고    scopus 로고
    • Fabrication and characterization of hierarchically organized nanoparticle reinforced nanofibrous composite scaffolds
    • Teo WE, Liao S, Chan C, Ramakrishna S. Fabrication and characterization of hierarchically organized nanoparticle reinforced nanofibrous composite scaffolds. Acta Biomater. 7(1), 193-202 (2011).
    • (2011) Acta Biomater. , vol.7 , Issue.1 , pp. 193-202
    • Teo, W.E.1    Liao, S.2    Chan, C.3    Ramakrishna, S.4
  • 7
    • 84862741865 scopus 로고    scopus 로고
    • Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties
    • Li YQ, Yu T, Yang TY, Zheng LX, Liao K. Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv. Mater. 24(25), 3426-3431 (2012).
    • (2012) Adv. Mater. , vol.24 , Issue.25 , pp. 3426-3431
    • Li, Y.Q.1    Yu, T.2    Yang, T.Y.3    Zheng, L.X.4    Liao, K.5
  • 8
    • 55749100987 scopus 로고    scopus 로고
    • Nanotechnology and nanomaterials: Promises for improved tissue regeneration
    • Zhang LJ, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4(1), 66-80 (2009).
    • (2009) Nano Today , vol.4 , Issue.1 , pp. 66-80
    • Zhang, L.J.1    Webster, T.J.2
  • 9
    • 33745799503 scopus 로고    scopus 로고
    • Electrospinning of polymeric nanofibers for tissue engineering applications: A review
    • DOI 10.1089/ten.2006.12.1197
    • Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12(5), 1197-1211 (2006). (Pubitemid 44024491)
    • (2006) Tissue Engineering , vol.12 , Issue.5 , pp. 1197-1211
    • Pham, Q.P.1    Sharma, U.2    Mikos, A.G.3
  • 10
    • 49449086744 scopus 로고    scopus 로고
    • Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering
    • Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29(30), 4100-4107 (2008).
    • (2008) Biomaterials , vol.29 , Issue.30 , pp. 4100-4107
    • Kumbar, S.G.1    Nukavarapu, S.P.2    James, R.3    Nair, L.S.4    Laurencin, C.T.5
  • 11
    • 48449106855 scopus 로고    scopus 로고
    • Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering
    • Zhu XL, Cui WG, Li XH, Jin Y. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 9(7), 1795-1801 (2008).
    • (2008) Biomacromolecules , vol.9 , Issue.7 , pp. 1795-1801
    • Zhu, X.L.1    Cui, W.G.2    Li, X.H.3    Jin, Y.4
  • 12
    • 77956011359 scopus 로고    scopus 로고
    • Porous nanofibrous PLLA scaffolds for vascular tissue engineering
    • Hu JA, Sun XA, Ma HY et al. Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials 31(31), 7971-7977 (2010).
    • (2010) Biomaterials , vol.31 , Issue.31 , pp. 7971-7977
    • Hu, J.A.1    Sun, X.A.2    Ma, H.Y.3
  • 13
    • 50349091938 scopus 로고    scopus 로고
    • Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/ chitosan for bone tissue engineering
    • Zhang YZ, Venugopal JR, El-Turki A et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29(32), 4314-4322 (2008).
    • (2008) Biomaterials , vol.29 , Issue.32 , pp. 4314-4322
    • Zhang, Y.Z.1    Venugopal, J.R.2    El-Turki, A.3
  • 14
    • 60049100244 scopus 로고    scopus 로고
    • Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts
    • Gupta D, Venugopal J, Mitra S, Giri Dev VR, Ramakrishna S. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials 30(11), 2085-2094 (2009).
    • (2009) Biomaterials , vol.30 , Issue.11 , pp. 2085-2094
    • Gupta, D.1    Venugopal, J.2    Mitra, S.3    Giri Dev, V.R.4    Ramakrishna, S.5
  • 15
    • 69849114685 scopus 로고    scopus 로고
    • Three-dimensional cultures of osteogenic and chondrogenic cells: A tissue engineering approach to mimic bone and cartilage in vitro
    • Tortelli F, Cancedda R. Three-dimensional cultures of osteogenic and chondrogenic cells: a tissue engineering approach to mimic bone and cartilage in vitro. Eur. Cell. Mater. 17, 1-14 (2009).
    • (2009) Eur. Cell. Mater. , vol.17 , pp. 1-14
    • Tortelli, F.1    Cancedda, R.2
  • 16
    • 70649087929 scopus 로고    scopus 로고
    • Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering
    • Tian, H, Bharadwaj S, Liu Y et al. Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering. Biomaterials 31(5), 870-877 (2010).
    • (2010) Biomaterials , vol.31 , Issue.5 , pp. 870-877
    • Tian, H.1    Bharadwaj, S.2    Liu, Y.3
  • 18
    • 67849109814 scopus 로고    scopus 로고
    • Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering
    • Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 30(28), 4996-5003 (2009).
    • (2009) Biomaterials , vol.30 , Issue.28 , pp. 4996-5003
    • Prabhakaran, M.P.1    Venugopal, J.R.2    Ramakrishna, S.3
  • 19
    • 79957918510 scopus 로고    scopus 로고
    • Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue
    • Orlova Y, Magome N, Liu L, Chen Y, Agladze K. Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials 32(24), 5615-5624 (2011).
    • (2011) Biomaterials , vol.32 , Issue.24 , pp. 5615-5624
    • Orlova, Y.1    Magome, N.2    Liu, L.3    Chen, Y.4    Agladze, K.5
  • 20
    • 84870393424 scopus 로고    scopus 로고
    • Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating
    • Hsiao CW, Bai MY, Chang Y et al. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 34, 1063-1072 (2013).
    • (2013) Biomaterials , vol.34 , pp. 1063-1072
    • Hsiao, C.W.1    Bai, M.Y.2    Chang, Y.3
  • 22
    • 78650732287 scopus 로고    scopus 로고
    • Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration
    • Wang CY, Zhang KH, Fan CY et al. Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater. 7(2), 634-643 (2011).
    • (2011) Acta Biomater , vol.7 , Issue.2 , pp. 634-643
    • Wang, C.Y.1    Zhang, K.H.2    Fan, C.Y.3
  • 23
    • 35748976550 scopus 로고    scopus 로고
    • Tissue engineering based on cell sheet technology
    • DOI 10.1002/adma.200701978
    • Matsuda N, Shimizu T, Yamato M, Okano T. Tissue engineering based on cell sheet technology. Adv. Mater. 19(20), 3089-3099 (2007). (Pubitemid 350044442)
    • (2007) Advanced Materials , vol.19 , Issue.20 , pp. 3089-3099
    • Matsuda, N.1    Shimizu, T.2    Yamato, M.3    Okano, T.4
  • 24
    • 36849081818 scopus 로고    scopus 로고
    • Cell sheet engineering for heart tissue repair
    • DOI 10.1016/j.addr.2007.08.031, PII S0169409X07002499, Emerging Trends in Cell-Based Therapies
    • Masuda S, Shimizu T, Yamato M, Okano T. Cell sheet engineering for heart tissue repair. Adv. Drug Deliv. Rev. 60(2), 277-285 (2008). (Pubitemid 350236404)
    • (2008) Advanced Drug Delivery Reviews , vol.60 , Issue.2 , pp. 277-285
    • Masuda, S.1    Shimizu, T.2    Yamato, M.3    Okano, T.4
  • 25
    • 84859579818 scopus 로고    scopus 로고
    • Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro
    • Haraguchi Y, Shimizu T, Sasagawa T et al. Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat. Protoc. 7(5), 850-858 (2012).
    • (2012) Nat. Protoc. , vol.7 , Issue.5 , pp. 850-858
    • Haraguchi, Y.1    Shimizu, T.2    Sasagawa, T.3
  • 26
    • 38449087800 scopus 로고    scopus 로고
    • 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation
    • DOI 10.1002/adfm.200601158
    • Moroni L, Schotel R, Hamann D, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv. Func. Mater. 18(1), 53-60 (2008). (Pubitemid 351143399)
    • (2008) Advanced Functional Materials , vol.18 , Issue.1 , pp. 53-60
    • Moroni, L.1    Schotel, R.2    Hamann, D.3    De Wijn, J.R.4    Van Blitterswijk, C.A.5
  • 27
    • 54949154117 scopus 로고    scopus 로고
    • Hybrid process for fabricating 3D Hierarchical Scaffolds combining rapid prototyping and electrospinning
    • Kim G, Son J, Park S, Kim W. Hybrid process for fabricating 3D Hierarchical Scaffolds combining rapid prototyping and electrospinning. Macromol. Rapid Commun. 29(19), 1577-1581 (2008).
    • (2008) Macromol. Rapid Commun. , vol.29 , Issue.19 , pp. 1577-1581
    • Kim, G.1    Son, J.2    Park, S.3    Kim, W.4
  • 28
    • 78650294679 scopus 로고    scopus 로고
    • Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold
    • Blakeney BA, Tambralli A, Anderson JM et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 32(6), 1583-1590 (2011). n First article to report a truly 3D nanofibrous scaffold in bulk form.
    • (2011) Biomaterials , vol.32 , Issue.6 , pp. 1583-1590
    • Blakeney, B.A.1    Tambralli, A.2    Anderson, J.M.3
  • 29
    • 84862569553 scopus 로고    scopus 로고
    • Three-dimensional electrospun alginate nanofiber mats via tailored charge repulsions
    • Bonino CA, Efimenko K, Jeong SI et al. Three-dimensional electrospun alginate nanofiber mats via tailored charge repulsions. Small 8(12), 1928-1936 (2012).
    • (2012) Small , vol.8 , Issue.12 , pp. 1928-1936
    • Bonino, C.A.1    Efimenko, K.2    Jeong, S.I.3
  • 30
    • 84858978170 scopus 로고    scopus 로고
    • Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: A review
    • Zhong S, Zhang Y, Lim CT. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Tissue Eng. Part B Rev. 18(2), 77-87 (2012).
    • (2012) Tissue Eng. Part B Rev. , vol.18 , Issue.2 , pp. 77-87
    • Zhong, S.1    Zhang, Y.2    Lim, C.T.3
  • 31
    • 70349840761 scopus 로고    scopus 로고
    • Electrospun materials as potential platforms for bone tissue engineering
    • Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv. Drug Deliv. Rev. 61(12), 1065-1083 (2009).
    • (2009) Adv. Drug Deliv. Rev. , vol.61 , Issue.12 , pp. 1065-1083
    • Jang, J.H.1    Castano, O.2    Kim, H.W.3
  • 34
    • 43549116318 scopus 로고    scopus 로고
    • Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration
    • DOI 10.1111/j.1525-1594.2008.00557.x
    • Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif. Organs 32(5), 388-397 (2008). (Pubitemid 351677402)
    • (2008) Artificial Organs , vol.32 , Issue.5 , pp. 388-397
    • Venugopal, J.R.1    Low, S.2    Choon, A.T.3    Kumar, A.B.4    Ramakrishna, S.5
  • 35
    • 39749088901 scopus 로고    scopus 로고
    • Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ Nano-Hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds
    • DOI 10.1177/0885328207077632
    • Huang YX, Ren J, Chen C, Ren TB, Zhou XY. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/nanohydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J. Biomater. Appl. 22(5), 409-432 (2008). (Pubitemid 351292173)
    • (2008) Journal of Biomaterials Applications , vol.22 , Issue.5 , pp. 409-432
    • Huang, Y.X.1    Ren, J.2    Chen, C.3    Ren, T.B.4    Zhou, X.Y.5
  • 36
    • 84875924905 scopus 로고    scopus 로고
    • Electrical stimulation of myoblast proliferation and differentiation on aligned nanostructured conductive polymer platforms
    • Quigley AF, Razal JM, Kita M. Electrical stimulation of myoblast proliferation and differentiation on aligned nanostructured conductive polymer platforms. Adv. Healthc. Mater. 1, 801-808 (2012).
    • (2012) Adv. Healthc. Mater. , vol.1 , pp. 801-808
    • Quigley, A.F.1    Razal, J.M.2    Kita, M.3
  • 37
    • 77949913083 scopus 로고    scopus 로고
    • Toxicity issues in the application of carbon nanotubes to biological systems
    • Firme CP 3rd, Bandaru PR. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 6(2), 245-256 (2010).
    • (2010) Nanomedicine , vol.6 , Issue.2 , pp. 245-256
    • Firme Iii., C.P.1    Bandaru, P.R.2
  • 38
    • 71949117632 scopus 로고    scopus 로고
    • Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology
    • Oberdorster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J. Intern. Med. 267(1), 89-105 (2010).
    • (2010) J. Intern. Med. , vol.267 , Issue.1 , pp. 89-105
    • Oberdorster, G.1
  • 39
    • 77149135601 scopus 로고    scopus 로고
    • Interfacing live cells with nanocarbon substrates
    • Agarwal, S XZ, Zhou, F. Ye et al. Interfacing live cells with nanocarbon substrates. Langmuir 26(4), 2244-2247 (2010).
    • (2010) Langmuir , vol.26 , Issue.4 , pp. 2244-2247
    • Agarwal, S.X.Z.1    Ye, Z.F.2
  • 40
    • 74149085065 scopus 로고    scopus 로고
    • Cellular behavior of human mesenchymal stem cells cultured on single-walled carbon nanotube film
    • Agarwal S, Zhou X, Ye F et al. Cellular behavior of human mesenchymal stem cells cultured on single-walled carbon nanotube film. Carbon 48(4), 1095-1104 (2010).
    • (2010) Carbon , vol.48 , Issue.4 , pp. 1095-1104
    • Agarwal, S.1    Zhou, X.2    Ye, F.3
  • 41
    • 75549085897 scopus 로고    scopus 로고
    • Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells
    • Agarwal A, Weis TL, Schurr MJ et al. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials 31(4), 680-690 (2010).
    • (2010) Biomaterials , vol.31 , Issue.4 , pp. 680-690
    • Agarwal, A.1    Weis, T.L.2    Schurr, M.J.3
  • 42
    • 62549102404 scopus 로고    scopus 로고
    • Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides
    • Zhu J, Tang C, Kottke-Marchant K, Marchant RE. Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug. Chem. 20(2), 333-339 (2009).
    • (2009) Bioconjug. Chem. , vol.20 , Issue.2 , pp. 333-339
    • Zhu, J.1    Tang, C.2    Kottke-Marchant, K.3    Marchant, R.E.4
  • 43
    • 84863645119 scopus 로고    scopus 로고
    • A single component conducting polymer hydrogel as a scaffold for tissue engineering
    • Mawad D, Stewart E, Officer DL et al. A single component conducting polymer hydrogel as a scaffold for tissue engineering. Adv. Func. Mater. 22(13), 2692-2699 (2012).
    • (2012) Adv. Func. Mater. , vol.22 , Issue.13 , pp. 2692-2699
    • Mawad, D.1    Stewart, E.2    Officer, D.L.3
  • 44
    • 84857395764 scopus 로고    scopus 로고
    • Mechanical properties and in vitro behavior of nanofiberhydrogel composites for tissue engineering applications
    • Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S. Mechanical properties and in vitro behavior of nanofiberhydrogel composites for tissue engineering applications. Nanotechnology 23(9), 095705 (2012).
    • (2012) Nanotechnology , vol.23 , Issue.9 , pp. 095705
    • Kai, D.1    Prabhakaran, M.P.2    Stahl, B.3    Eblenkamp, M.4    Wintermantel, E.5    Ramakrishna, S.6
  • 45
    • 80055023655 scopus 로고    scopus 로고
    • Mechanically tough Pluronic F127/Laponite nanocomposite hydrogels from covalently and physically cross-linked networks
    • Wu CJ, Gaharwar AK, Chan BK, Schmidt G. Mechanically tough Pluronic F127/Laponite nanocomposite hydrogels from covalently and physically cross-linked networks. Macromolecules 44(20), 8215-8224 (2011).
    • (2011) Macromolecules , vol.44 , Issue.20 , pp. 8215-8224
    • Wu, C.J.1    Gaharwar, A.K.2    Chan, B.K.3    Schmidt, G.4
  • 46
    • 77957715687 scopus 로고    scopus 로고
    • PEG/clay nanocomposite hydrogel: A mechanically robust tissue engineering scaffold
    • Chang CW, Van Spreeuwel A, Zhang C, Varghese S. PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6(20), 5157-5164 (2010).
    • (2010) Soft Matter , vol.6 , Issue.20 , pp. 5157-5164
    • Chang, C.W.1    Van Spreeuwel, A.2    Zhang, C.3    Varghese, S.4
  • 47
    • 84859102860 scopus 로고    scopus 로고
    • Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid
    • Azami M, Moosavifar MJ, Baheiraei N, Moztarzadeh F, Ai J. Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. J. Biomed. Mater. Res. A 100(5), 1347-1356 (2012).
    • (2012) J. Biomed. Mater. Res. A , vol.100 , Issue.5 , pp. 1347-1356
    • Azami, M.1    Moosavifar, M.J.2    Baheiraei, N.3    Moztarzadeh, F.4    Ai, J.5
  • 49
    • 77949659508 scopus 로고    scopus 로고
    • Preparation and characterization of novel b chitin/nanosilver composite scaffolds for wound dressing applications
    • Sudheesh Kumar PT, Abhilash S, Manzoor K et al. Preparation and characterization of novel b chitin/nanosilver composite scaffolds for wound dressing applications. Carbohyd. Polym. 80(3), 761-767 (2010).
    • (2010) Carbohyd. Polym. , vol.80 , Issue.3 , pp. 761-767
    • Sudheesh Kumar, P.T.1    Abhilash, S.2    Manzoor, K.3
  • 50
    • 78649479400 scopus 로고    scopus 로고
    • Nanogel engineering for new nanobiomaterials: From chaperoning engineering to biomedical applications
    • Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem. Rec. 10(6), 366-376 (2010).
    • (2010) Chem. Rec. , vol.10 , Issue.6 , pp. 366-376
    • Sasaki, Y.1    Akiyoshi, K.2
  • 51
    • 65549157815 scopus 로고    scopus 로고
    • Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor
    • Hayashi C, Hasegawa U, Saita Y et al. Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor. J. Cell. Physiol. 220(1), 1-7 (2009).
    • (2009) J. Cell. Physiol. , vol.220 , Issue.1 , pp. 1-7
    • Hayashi, C.1    Hasegawa, U.2    Saita, Y.3
  • 52
    • 79953692404 scopus 로고    scopus 로고
    • Nanogel-based scaffold delivery of prostaglandin E(2) receptor-specific agonist in combination with a low dose of growth factor heals critical-size bone defects in mice
    • Kamolratanakul P, Hayata T, Ezura Y et al. Nanogel-based scaffold delivery of prostaglandin E(2) receptor-specific agonist in combination with a low dose of growth factor heals critical-size bone defects in mice. Arthritis Rheum. 63(4), 1021-1033 (2011).
    • (2011) Arthritis Rheum , vol.63 , Issue.4 , pp. 1021-1033
    • Kamolratanakul, P.1    Hayata, T.2    Ezura, Y.3
  • 53
    • 70349191459 scopus 로고    scopus 로고
    • Synthesis by AGET ATRP of degradable nanogel precursors for in situ formation of nanostructured hyaluronic acid hydrogel
    • Bencherif SA, Washburn NR, Matyjaszewski K. Synthesis by AGET ATRP of degradable nanogel precursors for in situ formation of nanostructured hyaluronic acid hydrogel. Biomacromolecules 10(9), 2499-2507 (2009).
    • (2009) Biomacromolecules , vol.10 , Issue.9 , pp. 2499-2507
    • Bencherif, S.A.1    Washburn, N.R.2    Matyjaszewski, K.3
  • 54
    • 80053257163 scopus 로고    scopus 로고
    • Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel
    • O'Leary LE, Fallas JA, Bakota EL, Kang MK, Hartgerink JD. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 3(10), 821-828 (2011).
    • (2011) Nat. Chem. , vol.3 , Issue.10 , pp. 821-828
    • O'Leary, L.E.1    Fallas, J.A.2    Bakota, E.L.3    Kang, M.K.4    Hartgerink, J.D.5
  • 55
  • 56
    • 40049107164 scopus 로고    scopus 로고
    • Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene
    • Wang X, Ohlin CA, Lu Q, Hu J. Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene. Biomaterials 29(13), 2049-2059 (2008).
    • (2008) Biomaterials , vol.29 , Issue.13 , pp. 2049-2059
    • Wang, X.1    Ohlin, C.A.2    Lu, Q.3    Hu, J.4
  • 57
    • 39649122120 scopus 로고    scopus 로고
    • Proliferation of aligned mammalian cells on laser-nanostructured polystyrene
    • Rebollar E, Frischauf I, Olbrich M et al. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials 29(12), 1796-1806 (2008).
    • (2008) Biomaterials , vol.29 , Issue.12 , pp. 1796-1806
    • Rebollar, E.1    Frischauf, I.2    Olbrich, M.3
  • 58
    • 79958231689 scopus 로고    scopus 로고
    • Laser-modified nanostructures of PET films and cell behavior
    • Mirzadeh H, Moghadam EV, Mivehchi H. Laser-modified nanostructures of PET films and cell behavior. J. Biomed. Mater. Res. A 98(1), 63-71 (2011).
    • (2011) J. Biomed. Mater. Res. A , vol.98 , Issue.1 , pp. 63-71
    • Mirzadeh, H.1    Moghadam, E.V.2    Mivehchi, H.3
  • 59
    • 42949154178 scopus 로고    scopus 로고
    • Nanostructured scaffolds for neural applications
    • DOI 10.2217/17435889.3.2.183
    • Seidlits SK, Lee JY, Schmidt CE. Nanostructured scaffolds for neural applications. Nanomedicine (Lond.) 3(2), 183-199 (2008). (Pubitemid 351611855)
    • (2008) Nanomedicine , vol.3 , Issue.2 , pp. 183-199
    • Seidlits, S.K.1    Lee, J.Y.2    Schmidt, C.E.3
  • 60
    • 0041670837 scopus 로고    scopus 로고
    • Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends
    • DOI 10.1016/S0142-9612(03)00131-5
    • Tan KH, Chua CK, Leong KF et al. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 24(18), 3115-3123 (2003). (Pubitemid 36944942)
    • (2003) Biomaterials , vol.24 , Issue.18 , pp. 3115-3123
    • Tan, K.H.1    Chua, C.K.2    Leong, K.F.3    Cheah, C.M.4    Cheang, P.5    Abu Bakar, M.S.6    Cha, S.W.7
  • 61
    • 0037409864 scopus 로고    scopus 로고
    • Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
    • DOI 10.1016/S0142-9612(03)00030-9
    • Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13), 2363-2378 (2003). (Pubitemid 36434056)
    • (2003) Biomaterials , vol.24 , Issue.13 , pp. 2363-2378
    • Leong, K.F.1    Cheah, C.M.2    Chua, C.K.3
  • 63
    • 34247624498 scopus 로고    scopus 로고
    • Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: Effects of resin formulations and laser parameters
    • DOI 10.1021/bm060834v
    • Lee KW, Wang S, Fox BC, Ritman EL, Yaszemski MJ, Lu L. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 8(4), 1077-1084 (2007). (Pubitemid 46672683)
    • (2007) Biomacromolecules , vol.8 , Issue.4 , pp. 1077-1084
    • Lee, K.-W.1    Wang, S.2    Fox, B.C.3    Ritman, E.L.4    Yaszemski, M.J.5    Lu, L.6
  • 65
    • 54949129140 scopus 로고    scopus 로고
    • Thermally stable organic-inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing
    • Jun Y, Nagpal P, Norris DJ. Thermally stable organic-inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing. Adv. Mater. 20(3), 606-610 (2008).
    • (2008) Adv. Mater. , vol.20 , Issue.3 , pp. 606-610
    • Jun, Y.1    Nagpal, P.2    Norris, D.J.3
  • 66
    • 34248559824 scopus 로고    scopus 로고
    • Multiphoton polymerization
    • DOI 10.1016/S1369-7021(07)70130-X, PII S136970210770130X
    • Li L, Fourkas JT. Multiphoton polymerization. Mater. Today 10(6), 30-37 (2007). (Pubitemid 46754973)
    • (2007) Materials Today , vol.10 , Issue.6 , pp. 30-37
    • Li, L.1    Fourkas, J.T.2
  • 67
    • 83755195465 scopus 로고    scopus 로고
    • Femtosecond laser nanofabrication of hydrogel biomaterial
    • Zhang W, Chen S. Femtosecond laser nanofabrication of hydrogel biomaterial. MRS Bull. 36(12), 1028-1033 (2011).
    • (2011) MRS Bull , vol.36 , Issue.12 , pp. 1028-1033
    • Zhang, W.1    Chen, S.2
  • 69
    • 78651288385 scopus 로고    scopus 로고
    • Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles
    • Gittard SD, Miller PR, Boehm RD et al. Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles. Faraday Discuss. 149(0), 171-185 (2011).
    • (2011) Faraday Discuss , vol.149 , Issue.0 , pp. 171-185
    • Gittard, S.D.1    Miller, P.R.2    Boehm, R.D.3
  • 70
    • 65149089604 scopus 로고    scopus 로고
    • Three-dimensional biodegradable structures fabricated by two-photon polymerization
    • Claeyssens F, Hasan EA, Gaidukeviciute A et al. Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25(5), 3219-3223 (2009).
    • (2009) Langmuir , vol.25 , Issue.5 , pp. 3219-3223
    • Claeyssens, F.1    Hasan, E.A.2    Gaidukeviciute, A.3
  • 71
    • 33645923419 scopus 로고    scopus 로고
    • Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices
    • Doraiswamy A, Jin C, Narayan RJ et al. Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater. 2(3), 267-275 (2006).
    • (2006) Acta Biomater , vol.2 , Issue.3 , pp. 267-275
    • Doraiswamy, A.1    Jin, C.2    Narayan, R.J.3
  • 72
    • 77951824398 scopus 로고    scopus 로고
    • Laser direct writing of micro- and nano-scale medical devices
    • Gittard SD, Narayan RJ. Laser direct writing of micro- and nano-scale medical devices. Expert Rev. Med. Dev. 7(3), 343-356 (2010).
    • (2010) Expert Rev. Med. Dev. , vol.7 , Issue.3 , pp. 343-356
    • Gittard, S.D.1    Narayan, R.J.2
  • 73
    • 0033902564 scopus 로고    scopus 로고
    • Submicron multiphoton free-form fabrication of proteins and polymers: Studies of reaction efficiencies and applications in sustained release
    • DOI 10.1021/ma9910437
    • Pitts JD, Campagnola PJ, Epling GA, Goodman SL. Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release. Macromolecules 33(5), 1514-1523 (2000). (Pubitemid 30589142)
    • (2000) Macromolecules , vol.33 , Issue.5 , pp. 1514-1523
    • Pitts, J.D.1    Campagnola, P.J.2    Epling, G.A.3    Goodman, S.L.4
  • 74
    • 84857808864 scopus 로고    scopus 로고
    • Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique
    • Anastasia K, Shaun G, Sabrina S et al. Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization- micromolding technique. Biofabrication 4(1), 015001 (2012).
    • (2012) Biofabrication , vol.4 , Issue.1 , pp. 015001
    • Anastasia, K.1    Shaun, G.2    Sabrina, S.3
  • 75
    • 0036674246 scopus 로고    scopus 로고
    • New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: Bovine serum albumin and type 1 collagen
    • Pitts JD, Howell AR, Taboada R et al. New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: bovine serum albumin and type 1 collagen. Photochem. Photobiol. 76(2), 135-144 (2002).
    • (2002) Photochem. Photobiol. , vol.76 , Issue.2 , pp. 135-144
    • Pitts, J.D.1    Howell, A.R.2    Taboada, R.3
  • 76
    • 58049221308 scopus 로고    scopus 로고
    • Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication
    • Ovsianikov A, Viertl J, Chichkov B et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2(11), 2257-2262 (2008).
    • (2008) ACS Nano , vol.2 , Issue.11 , pp. 2257-2262
    • Ovsianikov, A.1    Viertl, J.2    Chichkov, B.3
  • 77
    • 78649553601 scopus 로고    scopus 로고
    • Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication
    • Sakellari I, Gaidukeviciute A, Giakoumaki A et al. Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication. Appl. Phys. A 100(2), 359-364 (2010).
    • (2010) Appl. Phys. A , vol.100 , Issue.2 , pp. 359-364
    • Sakellari, I.1    Gaidukeviciute, A.2    Giakoumaki, A.3
  • 78
    • 79251648820 scopus 로고    scopus 로고
    • Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications
    • Ovsianikov A, Malinauskas M, Schlie S et al. Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater. 7(3), 967-974 (2011).
    • (2011) Acta Biomater , vol.7 , Issue.3 , pp. 967-974
    • Ovsianikov, A.1    Malinauskas, M.2    Schlie, S.3
  • 79
    • 77951698312 scopus 로고    scopus 로고
    • Two photon polymerization-micromolding of polyethylene glycol-gentamicin sulfate microneedles
    • Gittard SD, Ovsianikov A, Akar H et al. Two photon polymerization- micromolding of polyethylene glycol-gentamicin sulfate microneedles. Adv. Eng. Mater. 12(4), B77-B82 (2010).
    • (2010) Adv. Eng. Mater. , vol.12 , Issue.4
    • Gittard, S.D.1    Ovsianikov, A.2    Akar, H.3
  • 80
    • 80052422188 scopus 로고    scopus 로고
    • Two-photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces
    • Weiß T, Schade R, Laube T et al. Two-photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces. Adv. Eng. Mater. 13(9), B264-B273 (2011).
    • (2011) Adv. Eng. Mater. , vol.13 , Issue.9
    • Weiß, T.1    Schade, R.2    Laube, T.3
  • 81
    • 78649565673 scopus 로고    scopus 로고
    • Laser printing of cells into 3D scaffolds
    • Ovsianikov A, Gruene M, Pflaum M et al. Laser printing of cells into 3D scaffolds. Biofabrication 2(1), 014104 (2010).
    • (2010) Biofabrication , vol.2 , Issue.1 , pp. 014104
    • Ovsianikov, A.1    Gruene, M.2    Pflaum, M.3
  • 84
    • 33947390928 scopus 로고    scopus 로고
    • Direct electrochemical and spectroscopic assessment of heme integrity in multiphoton photo-cross-linked cytochrome c structures
    • DOI 10.1021/ac0619377
    • Lyon JL, Hill RT, Shear JB, Stevenson KJ. Direct electrochemical and spectroscopic assessment of heme integrity in multiphoton photo-cross-linked cytochrome C structures. Anal. Chem. 79(6), 2303-2311 (2007). (Pubitemid 46449009)
    • (2007) Analytical Chemistry , vol.79 , Issue.6 , pp. 2303-2311
    • Lyon, J.L.1    Hill, R.T.2    Shear, J.B.3    Stevenson, K.J.4
  • 85
    • 45849109215 scopus 로고    scopus 로고
    • Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials
    • Ovsianikov A, Schlie S, Ngezahayo A, Haverich A, Chichkov BN. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J. Tissue Eng. Regen. Med. 1(6), 443-449 (2007).
    • (2007) J. Tissue Eng. Regen. Med. , vol.1 , Issue.6 , pp. 443-449
    • Ovsianikov, A.1    Schlie, S.2    Ngezahayo, A.3    Haverich, A.4    Chichkov, B.N.5
  • 86
    • 78249240622 scopus 로고    scopus 로고
    • Microreplication of laser-fabricated surface and three-dimensional structures
    • Anastasia K, Sabrina S, Elena F et al. Microreplication of laser-fabricated surface and three-dimensional structures. J. Opt. 12(12), 124009 (2010).
    • (2010) J. Opt. , vol.12 , Issue.12 , pp. 124009
    • Anastasia, K.1    Sabrina, S.2    Elena, F.3
  • 87
    • 34247610367 scopus 로고    scopus 로고
    • Rapid prototyping of ossicular replacement prostheses
    • DOI 10.1016/j.apsusc.2007.01.062, PII S0169433207000669, Proceedings of the Fifth International Conference on Photo-Excited Processes and Applications (5-ICPEPA)
    • Ovsianikov A, Chichkov B, Adunka O et al. Rapid prototyping of ossicular replacement prostheses. Appl. Surf. Sci. 253(15), 6603-6607 (2007). (Pubitemid 46686834)
    • (2007) Applied Surface Science , vol.253 , Issue.15 , pp. 6603-6607
    • Ovsianikov, A.1    Chichkov, B.2    Adunka, O.3    Pillsbury, H.4    Doraiswamy, A.5    Narayan, R.J.6
  • 88
    • 77955593070 scopus 로고    scopus 로고
    • Multi-focus two-photon polymerization technique based on individually controlled phase modulation
    • Obata K, Koch J, Hinze U, Chichkov BN. Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Opt. Express. 18(16), 17193-17200 (2010).
    • (2010) Opt. Express. , vol.18 , Issue.16 , pp. 17193-17200
    • Obata, K.1    Koch, J.2    Hinze, U.3    Chichkov, B.N.4
  • 89
    • 82055185830 scopus 로고    scopus 로고
    • Scalable robotic biofabrication of tissue spheroids
    • Mehesz AN, Brown J, Hajdu Z et al. Scalable robotic biofabrication of tissue spheroids. Biofabrication 3(2), 025002 (2011).
    • (2011) Biofabrication , vol.3 , Issue.2 , pp. 025002
    • Mehesz, A.N.1    Brown, J.2    Hajdu, Z.3
  • 90
    • 77957562650 scopus 로고    scopus 로고
    • Biofabrication: A 21st century manufacturing paradigm
    • Mironov V, Trusk T, Kasyanov V et al. Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1(2), 022001 (2009).
    • (2009) Biofabrication , vol.1 , Issue.2 , pp. 022001
    • Mironov, V.1    Trusk, T.2    Kasyanov, V.3
  • 91
    • 77955275038 scopus 로고    scopus 로고
    • Laser assisted bioprinting of engineered tissue with high cell density and microscale organization
    • Guillotin B, Souquet A, Catros S et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28), 7250-7256 (2010).
    • (2010) Biomaterials , vol.31 , Issue.28 , pp. 7250-7256
    • Guillotin, B.1    Souquet, A.2    Catros, S.3
  • 92
    • 84868125762 scopus 로고    scopus 로고
    • Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology
    • Xu T, Zhao W, Zhu JM et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1), 130-139 (2013).
    • (2013) Biomaterials , vol.34 , Issue.1 , pp. 130-139
    • Xu, T.1    Zhao, W.2    Zhu, J.M.3
  • 93
    • 84862869528 scopus 로고    scopus 로고
    • A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
    • Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26), 6020-6041 (2012).
    • (2012) Biomaterials , vol.33 , Issue.26 , pp. 6020-6041
    • Billiet, T.1    Vandenhaute, M.2    Schelfhout, J.3    Van Vlierberghe, S.4    Dubruel, P.5
  • 94
    • 79956126266 scopus 로고    scopus 로고
    • A printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering
    • Censi R, Schuurman W, Malda J et al. A printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering. Adv. Func. Mater. 21(10), 1833-1842 (2011).
    • (2011) Adv. Func. Mater. , vol.21 , Issue.10 , pp. 1833-1842
    • Censi, R.1    Schuurman, W.2    Malda, J.3
  • 95
    • 82055196987 scopus 로고    scopus 로고
    • Bioprinting of hybrid tissue constructs with tailorable mechanical properties
    • Schuurman W, Khristov V, Pot MW et al. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3(2), 021001 (2011).
    • (2011) Biofabrication , vol.3 , Issue.2 , pp. 021001
    • Schuurman, W.1    Khristov, V.2    Pot, M.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.