-
1
-
-
77953811606
-
The development of electrically conductive polycaprolactone fumarate-polypyrrole composite materials for nerve regeneration
-
M. B. Runge, M. Dadsetan, J. Baltrusaitis, A. M. Knight, T. Ruesink, E. A. Lazcano, L. C. Lu, A. J. Windebank, and M. J. Yaszemski, The development of electrically conductive polycaprolactone fumarate-polypyrrole composite materials for nerve regeneration. Biomaterials 31, 5916 (2010).
-
(2010)
Biomaterials
, vol.31
, pp. 5916
-
-
Runge, M.B.1
Dadsetan, M.2
Baltrusaitis, J.3
Knight, A.M.4
Ruesink, T.5
Lazcano, E.A.6
Lu, L.C.7
Windebank, A.J.8
Yaszemski, M.J.9
-
2
-
-
77949355069
-
The nanostructure effect on the adhesion and growth rates of epithelial cells with well-defined nanoporous alumina substrates
-
S. H. Chung, S. J. Son, and J. Min, The nanostructure effect on the adhesion and growth rates of epithelial cells with well-defined nanoporous alumina substrates. Nanotechnology 21, 125104 (2010).
-
(2010)
Nanotechnology
, vol.21
, pp. 125104
-
-
Chung, S.H.1
Son, S.J.2
Min, J.3
-
3
-
-
84856000395
-
Hierarchically designed electrospun tubular scaffolds for cardiovascular applications
-
K. T. Shalumon, P. R. Sreerekha, D. Sathish, H. Tamura, S. V. Nair, K. P. Chennazhi, and R. Jayakumar, Hierarchically designed electrospun tubular scaffolds for cardiovascular applications. J. Biomed. Nanotechnol. 7, 609(2011).
-
(2011)
J. Biomed. Nanotechnol.
, vol.7
, pp. 609
-
-
Shalumon, K.T.1
Sreerekha, P.R.2
Sathish, D.3
Tamura, H.4
Nair, S.V.5
Chennazhi, K.P.6
Jayakumar, R.7
-
4
-
-
33646857934
-
Evaluation of mammalian cell adhesion on surface-modified porous silicon
-
S. P. Low, K. A. Williams, L. Canham, and N. H. Voelcker, Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials 27, 4538 (2006).
-
(2006)
Biomaterials
, vol.27
, pp. 4538
-
-
Low, S.P.1
Williams, K.A.2
Canham, L.3
Voelcker, N.H.4
-
5
-
-
84861468146
-
Electrospun fibers and tissue engineering
-
L. Jin, T. Wang, M. Zhu, M. K. Leach, Y. I. Naim, J. M. Corey, Z. Feng, and Q. Jiang, Electrospun fibers and tissue engineering. J. Biomed. Nanotechnol. 8, 1 (2012).
-
(2012)
J. Biomed. Nanotechnol.
, vol.8
, pp. 1
-
-
Jin, L.1
Wang, T.2
Zhu, M.3
Leach, M.K.4
Naim, Y.I.5
Corey, J.M.6
Feng, Z.7
Jiang, Q.8
-
6
-
-
27544468704
-
Fabrication of electrically conducting poly-Pyrrole-poly(ethylene oxide) composite nanofibers
-
S. Nair, S. Nataragan, and S. H. Kim, Fabrication of electrically conducting poly-Pyrrole-poly(ethylene oxide) composite nanofibers. Macromol. Rapid. Commun. 26, 1599 (2005).
-
(2005)
Macromol. Rapid. Commun.
, vol.26
, pp. 1599
-
-
Nair, S.1
Nataragan, S.2
Kim, S.H.3
-
7
-
-
80051469217
-
A chemically polymerized electrically conducting composite of polypyrrole nanoparticles and polyurethane for tissue engineering
-
C. R. Broda, J. Y. Lee, S. Sirivisoot, C. E. Schmidt, and B. S. Harrison, A chemically polymerized electrically conducting composite of polypyrrole nanoparticles and polyurethane for tissue engineering. J. Biomed. Mater. Res. 4, 508 (2011).
-
(2011)
J. Biomed. Mater. Res.
, vol.4
, pp. 508
-
-
Broda, C.R.1
Lee, J.Y.2
Sirivisoot, S.3
Schmidt, C.E.4
Harrison, B.S.5
-
8
-
-
79953007389
-
Carbon nanotubes as a scaffold for spermatogonial cell maintenance
-
T. Rafeeqi and G. Kaul, Carbon nanotubes as a scaffold for spermatogonial cell maintenance. J. Biomed. Nanotechnol. 6, 710 (2010).
-
(2010)
J. Biomed. Nanotechnol.
, vol.6
, pp. 710
-
-
Rafeeqi, T.1
Kaul, G.2
-
9
-
-
76749136294
-
Characterization of a new scaffold formed of polyelectrolyte complexes using atomic force and ultrasonic force microscopy
-
O. Valdés and M. T. Cuberes, Characterization of a new scaffold formed of polyelectrolyte complexes using atomic force and ultrasonic force microscopy. J. Biomed. Nanotechnol. 5, 716 (2009).
-
(2009)
J. Biomed. Nanotechnol.
, vol.5
, pp. 716
-
-
Valdés, O.1
Cuberes, M.T.2
-
10
-
-
79251645848
-
Material properties and electrical stimulation regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits
-
P. Moroder, M. B. Runge, H. Wang, T. Ruesink, L. C. Lu, R. J. Spinne, A. J. Windebank, and M. J. Yaszemski, Material properties and electrical stimulation regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits. Acta Biomater. 7, 944 (2011).
-
(2011)
Acta Biomater.
, vol.7
, pp. 944
-
-
Moroder, P.1
Runge, M.B.2
Wang, H.3
Ruesink, T.4
Lu, L.C.5
Spinne, R.J.6
Windebank, A.J.7
Yaszemski, M.J.8
-
11
-
-
48049111569
-
The regulation of cell functions electrically using biodegradable biodegradable polypyrrole-polylactide conductors
-
G. Shi, Z. Zhang, and M. Rouabhia, The regulation of cell functions electrically using biodegradable biodegradable polypyrrole-polylactide conductors. Biomaterials 29, 3792 (2008).
-
(2008)
Biomaterials
, vol.29
, pp. 3792
-
-
Shi, G.1
Zhang, Z.2
Rouabhia, M.3
-
12
-
-
84863074955
-
Induction of cell migration in vitro by an electrospun PDGF-BB/PLGA/PEG-PLA nanofibrous scaffold
-
X. Zhao and M. Hadjiargyrou, Induction of cell migration in vitro by an electrospun PDGF-BB/PLGA/PEG-PLA nanofibrous scaffold. J. Biomed. Nanotechnol. 7, 823 (2011).
-
(2011)
J. Biomed. Nanotechnol.
, vol.7
, pp. 823
-
-
Zhao, X.1
Hadjiargyrou, M.2
-
13
-
-
21244445821
-
Controlling cell behavior electrically: Current views and future potential
-
C. D. McCaig, A. M. Rajnicek, B. Song, and M. Zhao, Controlling cell behavior electrically: Current views and future potential. Physiol. Rev. 85, 943 (2005).
-
(2005)
Physiol. Rev.
, vol.85
, pp. 943
-
-
McCaig, C.D.1
Rajnicek, A.M.2
Song, B.3
Zhao, M.4
-
15
-
-
0035008964
-
Electric stimulation as an adjunct to heal diabetic foot ulcers: A randomized clinical trial
-
E. Peters, L. Lavery, D. Armstrong, and J. Fleischli, Electric stimulation as an adjunct to heal diabetic foot ulcers: A randomized clinical trial. Arch. Phys. Med. Rehabil. 82, 721 (2001).
-
(2001)
Arch. Phys. Med. Rehabil.
, vol.82
, pp. 721
-
-
Peters, E.1
Lavery, L.2
Armstrong, D.3
Fleischli, J.4
-
16
-
-
0037140657
-
Electrical stimulation in the treatment of pain
-
D. N. Rushton, Electrical stimulation in the treatment of pain. Disabil. Rehabil. 24, 407 (2002).
-
(2002)
Disabil. Rehabil.
, vol.24
, pp. 407
-
-
Rushton, D.N.1
-
17
-
-
0036233814
-
Long-term pallidal deep brain stimulation in patients with advanced Parkinson disease: 1-year follow-up study
-
T. J. Loher, J. M. Burgunder, T. Pohle, S. Weber, R. Sommerhalder, and J. K. Krauss, Long-term pallidal deep brain stimulation in patients with advanced Parkinson disease: 1-year follow-up study. J. Neurosurg. 96, 844 (2002).
-
(2002)
J. Neurosurg.
, vol.96
, pp. 844
-
-
Loher, T.J.1
Burgunder, J.M.2
Pohle, T.3
Weber, S.4
Sommerhalder, R.5
Krauss, J.K.6
-
18
-
-
0027461171
-
Prospects on clinical applications of electrical stimulation for nerve regeneration
-
B. F. Sisken, J. Walker, and M. Orgel, Prospects on clinical applications of electrical stimulation for nerve regeneration. J. Cell. Biochem. 51, 404 (1993).
-
(1993)
J. Cell. Biochem.
, vol.51
, pp. 404
-
-
Sisken, B.F.1
Walker, J.2
Orgel, M.3
-
19
-
-
0033224227
-
Elec-trochemically synthesized conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices
-
K. Gurunathan, A. V. Murugan, R. Marimuthu, U. P. Mulik, and D. P. Amalnerkar, Elec-trochemically synthesized conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater. Chem. Phys. 61, 173 (1999).
-
(1999)
Mater. Chem. Phys.
, vol.61
, pp. 173
-
-
Gurunathan, K.1
Murugan, A.V.2
Marimuthu, R.3
Mulik, U.P.4
Amalnerkar, D.P.5
-
20
-
-
0034711369
-
Microfabricating conjugated polymer actuators
-
E. W. H. Jager, E. Smela, and O. Inganas, Microfabricating conjugated polymer actuators. Science 290, 1540 (2000).
-
(2000)
Science
, vol.290
, pp. 1540
-
-
Jager, E.W.H.1
Smela, E.2
Inganas, O.3
-
22
-
-
67650438901
-
Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications
-
J. Y. Lee, C. A. Bashur, A. S. Goldstein, and C. E. Schmidt, Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30, 4325 (2009).
-
(2009)
Biomaterials
, vol.30
, pp. 4325
-
-
Lee, J.Y.1
Bashur, C.A.2
Goldstein, A.S.3
Schmidt, C.E.4
-
23
-
-
80051469217
-
A chemically polymerized electrically conducting composite of polypyrrole nanoparticles and polyurethane for tissue engineering
-
C. R. Broda, J. Y. Lee, S. Sirivisoot, C. E. Schmidt, and B. S. Harrison, A chemically polymerized electrically conducting composite of polypyrrole nanoparticles and polyurethane for tissue engineering. J. Biomed. Mate. Res. Part A. 98A, 509 (2011).
-
(2011)
J. Biomed. Mate. Res. Part A
, vol.98 A
, pp. 509
-
-
Broda, C.R.1
Lee, J.Y.2
Sirivisoot, S.3
Schmidt, C.E.4
Harrison, B.S.5
-
24
-
-
1842854152
-
In vivo studies of polypyrrole/peptide coated neural probes
-
X. Cui, J. Wiler, M. Dzaman, R. A. Altschuler, and D. C. Martin, In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 24, 777 (2003).
-
(2003)
Biomaterials
, vol.24
, pp. 777
-
-
Cui, X.1
Wiler, J.2
Dzaman, M.3
Altschuler, R.A.4
Martin, D.C.5
-
25
-
-
33845721714
-
Electrically conductive biodegradable polymer composite for nerve regeneration: Electricity-stimulated neurite outgrowth and axon regeneration
-
Z. Zhang, M. Rouabhia, Z. Wang, C. Roberge, G. Shi, P. Roche, J. Li, and L. Dao, Electrically conductive biodegradable polymer composite for nerve regeneration: Electricity-stimulated neurite outgrowth and axon regeneration. Artif. Organs. 31, 13 (2007).
-
(2007)
Artif. Organs.
, vol.31
, pp. 13
-
-
Zhang, Z.1
Rouabhia, M.2
Wang, Z.3
Roberge, C.4
Shi, G.5
Roche, P.6
Li, J.7
Dao, L.8
-
26
-
-
80052880249
-
The effects of replacing collagen fibers with carbon nanotubes on the rate of bone remodeling process
-
N. Jamilpour, A. Fereidoon, and G. Rouhi, The effects of replacing collagen fibers with carbon nanotubes on the rate of bone remodeling process. J. Biomed. Nanotechnol. 7, 542 (2011).
-
(2011)
J. Biomed. Nanotechnol.
, vol.7
, pp. 542
-
-
Jamilpour, N.1
Fereidoon, A.2
Rouhi, G.3
-
27
-
-
77955457218
-
Hair follicles stimulation effects of gelatin nanofibers containing silver nanoparticles
-
V. Tura, B. A. Hagiu, and I. I. Mangalagiu, Hair follicles stimulation effects of gelatin nanofibers containing silver nanoparticles. J. Biomed. Nanotechnol. 6, 192 (2010).
-
(2010)
J. Biomed. Nanotechnol.
, vol.6
, pp. 192
-
-
Tura, V.1
Hagiu, B.A.2
Mangalagiu, I.I.3
-
28
-
-
80052313903
-
No enhanced expression and infectivity of porcine endogenous retrovirus in primary porcine hepatocytes with chitosan nanofiber scaffold
-
B. Han, X. Shi, Z. Gu, J. Xiao, X. Chu, J. Gu, Y. Zhang, J. Tan, and Y. Ding, No enhanced expression and infectivity of porcine endogenous retrovirus in primary porcine hepatocytes with chitosan nanofiber scaffold. J. Biomed. Nanotechnol. 7, 377 (2011).
-
(2011)
J. Biomed. Nanotechnol.
, vol.7
, pp. 377
-
-
Han, B.1
Shi, X.2
Gu, Z.3
Xiao, J.4
Chu, X.5
Gu, J.6
Zhang, Y.7
Tan, J.8
Ding, Y.9
-
29
-
-
33947213876
-
Nerve growth factor-immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite extension
-
N. Gomez and C. E. Schmidt, Nerve growth factor-immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite extension. J. Biomed. Mater. Res. 8, 135 (2007).
-
(2007)
J. Biomed. Mater. Res.
, vol.8
, pp. 135
-
-
Gomez, N.1
Schmidt, C.E.2
-
30
-
-
84861466201
-
Silver-loaded biomimetic hydroxyapatite grafted poly(-caprolactone) composite nanofibers: A cytotoxicity study
-
R. Nirmala, H. S. Kang, H. M. Park, R. Navamathavan, I. S. Jeong, and H. Y. Kim, Silver-loaded biomimetic hydroxyapatite grafted poly(-caprolactone) composite nanofibers: A cytotoxicity study. J. Biomed. Nanotechnol. 8, 125 (2012).
-
(2012)
J. Biomed. Nanotechnol.
, vol.8
, pp. 125
-
-
Nirmala, R.1
Kang, H.S.2
Park, H.M.3
Navamathavan, R.4
Jeong, I.S.5
Kim, H.Y.6
-
31
-
-
0035131723
-
Preparation and characterization of polypyrrole-coated nano-sized novel ceramic
-
G. J. Cho, B. M. Fung, D. T. Glatzhofer, J. S. Lee, and Y. G. Shul, Preparation and characterization of polypyrrole-coated nano-sized novel ceramic. Langmuir 17, 456 (2001).
-
(2001)
Langmuir
, vol.17
, pp. 456
-
-
Cho, G.J.1
Fung, B.M.2
Glatzhofer, D.T.3
Lee, J.S.4
Shul, Y.G.5
-
32
-
-
36549095390
-
Lattice dynamics and vibrational spectra of polypyrrole
-
B. Tian and G. J. Zerbi, Lattice dynamics and vibrational spectra of polypyrrole. Chem. Phys. 92, 3892 (1990).
-
(1990)
Chem. Phys.
, vol.92
, pp. 3892
-
-
Tian, B.1
Zerbi, G.J.2
-
33
-
-
33748366187
-
Electromagnetic functionalized and core-shell micro/nanostructured polypyrrole composites
-
X. Li, M. Wan, Y. Wei, J. Shen, and Z. Chen, Electromagnetic functionalized and core-shell micro/nanostructured polypyrrole composites. J. Phys. Chem B 110, 14623 (2006).
-
(2006)
J. Phys. Chem B
, vol.110
, pp. 14623
-
-
Li, X.1
Wan, M.2
Wei, Y.3
Shen, J.4
Chen, Z.5
-
34
-
-
2542536209
-
Nanoporous aluminum oxide affects neutrophil behavior
-
M. Karlsson, A. Johansson, L. Tang, and M. Boman, Nanoporous aluminum oxide affects neutrophil behavior. Microsc. Res. Techniq. 63, 259 (2004).
-
(2004)
Microsc. Res. Techniq.
, vol.63
, pp. 259
-
-
Karlsson, M.1
Johansson, A.2
Tang, L.3
Boman, M.4
-
35
-
-
70349751972
-
Sponge-like nanostructured conducting polymers for electrically controlled drug release
-
X. Luo and X. Cui, Sponge-like nanostructured conducting polymers for electrically controlled drug release. Electrochem. Commun. 11, 1956 (2009).
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 1956
-
-
Luo, X.1
Cui, X.2
-
36
-
-
79952998152
-
Electrospun chitosan nanofibers for hepatocyte culture
-
Z. Feng, M. K. Leach, X. Chu, Y. Wang, T. Tian, X. Shi, Y. Ding, and Z. Gu, Electrospun chitosan nanofibers for hepatocyte culture. J. Biomed. Nanotechnol. 6, 658 (2010).
-
(2010)
J. Biomed. Nanotechnol.
, vol.6
, pp. 658
-
-
Feng, Z.1
Leach, M.K.2
Chu, X.3
Wang, Y.4
Tian, T.5
Shi, X.6
Ding, Y.7
Gu, Z.8
-
37
-
-
79952200343
-
Study on chitosan/polycaprolactone blending vascular scaffolds by electrospinning
-
W. Yang, J. Fu, D. Wang, T. Wang, H. Wang, S. Jin, and N. He, Study on chitosan/polycaprolactone blending vascular scaffolds by electrospinning. J. Biomed. Nanotechnol. 6, 254 (2010).
-
(2010)
J. Biomed. Nanotechnol.
, vol.6
, pp. 254
-
-
Yang, W.1
Fu, J.2
Wang, D.3
Wang, T.4
Wang, H.5
Jin, S.6
He, N.7
-
38
-
-
84861470397
-
Design and optimization of polyphosphazene functionalized fiber matrices for soft tissue regeneration
-
M. S. Peach, S. G. Kumbar, R. James, U. S. Toti, D. Balasubramaniam, M. Deng, B. Ulery, A. D. Mazzocca, M. B. McCarthy, N. L Morozowith, H. R. Allcock, and C. T. Laurencin, Design and optimization of polyphosphazene functionalized fiber matrices for soft tissue regeneration. J. Biomed. Nanotechnol. 8, 107 (2012).
-
(2012)
J. Biomed. Nanotechnol.
, vol.8
, pp. 107
-
-
Peach, M.S.1
Kumbar, S.G.2
James, R.3
Toti, U.S.4
Balasubramaniam, D.5
Deng, M.6
Ulery, B.7
Mazzocca, A.D.8
McCarthy, M.B.9
Morozowith, N.L.10
Allcock, H.R.11
Laurencin, C.T.12
-
39
-
-
79960983273
-
Enhanced osteoblast adhesion on polymeric nano-scaffolds for bone tissue engineering
-
N. Saranya, S. Saravanan, A. Moorthi, B. Ramyakrishna, and N. Selvamurugan, Enhanced osteoblast adhesion on polymeric nano-scaffolds for bone tissue engineering. J. Biomed. Nanotechnol. 7, 238 (2011).
-
(2011)
J. Biomed. Nanotechnol.
, vol.7
, pp. 238
-
-
Saranya, N.1
Saravanan, S.2
Moorthi, A.3
Ramyakrishna, B.4
Selvamurugan, N.5
-
41
-
-
79953138695
-
Nanoengineering a biocompatible inorganic scaffold for skin wound healing
-
G. E. J. Poinern, D. Fawcett, Y. J. Ng, N. Ali, R. K. Brundavanam, and Z. Jiang, Nanoengineering a biocompatible inorganic scaffold for skin wound healing. J. Biomed. Nanotechnol. 6, 497 (2010).
-
(2010)
J. Biomed. Nanotechnol.
, vol.6
, pp. 497
-
-
Poinern, G.E.J.1
Fawcett, D.2
Ng, Y.J.3
Ali, N.4
Brundavanam, R.K.5
Jiang, Z.6
-
42
-
-
84861476530
-
Synthesis and characterization of chitosan/chondroitin sulfate/nano-SiO2 composite scaffold for bone tissue engineering
-
K. C. Kavya, R. Dixit, R. Jayakumar, S. V. Nair, and K. P. Chennazhi, Synthesis and characterization of chitosan/chondroitin sulfate/nano-SiO2 composite scaffold for bone tissue engineering. J. Biomed. Nanotechnol. 8, 149 (2012).
-
(2012)
J. Biomed. Nanotechnol.
, vol.8
, pp. 149
-
-
Kavya, K.C.1
Dixit, R.2
Jayakumar, R.3
Nair, S.V.4
Chennazhi, K.P.5
-
43
-
-
67649756045
-
Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: Scaffolds for bone tissue engineering
-
S. Bhattacharyya, S. G. Kumbar, Y. M. Khan, L. S. Nair, A. Singh, N. R. Krogman, P. W. Brown, H. R. Allcock, and C. T. Laurencin, Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: Scaffolds for bone tissue engineering. J. Biomed. Nanotechnol. 5, 69 (2009).
-
(2009)
J. Biomed. Nanotechnol.
, vol.5
, pp. 69
-
-
Bhattacharyya, S.1
Kumbar, S.G.2
Khan, Y.M.3
Nair, L.S.4
Singh, A.5
Krogman, N.R.6
Brown, P.W.7
Allcock, H.R.8
Laurencin, C.T.9
-
44
-
-
33845384638
-
Polypyrrole-based conducting polymers and interactions with biological tissues
-
D. D. Ateh, H. A. Navsaria, and P. Vadgama, Polypyrrole-based conducting polymers and interactions with biological tissues. J. R. Soc. Interface 3, 741 (2006).
-
(2006)
J. R. Soc. Interface
, vol.3
, pp. 741
-
-
Ateh, D.D.1
Navsaria, H.A.2
Vadgama, P.3
|