메뉴 건너뛰기




Volumn 46, Issue 2, 2009, Pages 139-154

An application of methods for the probabilistic three-class classification of pregnancies of unknown location

Author keywords

Kernel logistic regression; Least squares support vector machines; Logistic regression; Multi class classification; Pregnancy of unknown location

Indexed keywords

KERNEL LOGISTIC REGRESSION; LEAST SQUARES SUPPORT VECTOR MACHINES; LOGISTIC REGRESSION; MULTI-CLASS CLASSIFICATION; PREGNANCY OF UNKNOWN LOCATION;

EID: 67349287660     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2008.12.003     Document Type: Article
Times cited : (14)

References (44)
  • 1
    • 4344573702 scopus 로고    scopus 로고
    • The use of a new logistic regression model for predicting the outcome of pregnancies of unknown location
    • Condous G., Okaro E., Khalid A., Timmerman D., Lu C., Zhou Y., et al. The use of a new logistic regression model for predicting the outcome of pregnancies of unknown location. Hum Reprod 19 (2004) 1900-1910
    • (2004) Hum Reprod , vol.19 , pp. 1900-1910
    • Condous, G.1    Okaro, E.2    Khalid, A.3    Timmerman, D.4    Lu, C.5    Zhou, Y.6
  • 3
    • 34548458464 scopus 로고    scopus 로고
    • Clinical information does not improve the performance of mathematical models in predicting the outcome of pregnancies of unknown location
    • Condous G., Van Calster B., Kirk E., Haider Z., Timmerman D., Van Huffel S., et al. Clinical information does not improve the performance of mathematical models in predicting the outcome of pregnancies of unknown location. Fertil Steril 88 (2007) 572-580
    • (2007) Fertil Steril , vol.88 , pp. 572-580
    • Condous, G.1    Van Calster, B.2    Kirk, E.3    Haider, Z.4    Timmerman, D.5    Van Huffel, S.6
  • 4
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • Hand D.J. Classifier technology and the illusion of progress. Stat Sci 21 (2006) 1-15
    • (2006) Stat Sci , vol.21 , pp. 1-15
    • Hand, D.J.1
  • 6
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., and Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett 9 (1999) 293-300
    • (1999) Neural Process Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 8
    • 15944363312 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • Zhu J., and Hastie T. Classification of gene microarrays by penalized logistic regression. Biostatistics 5 (2004) 427-443
    • (2004) Biostatistics , vol.5 , pp. 427-443
    • Zhu, J.1    Hastie, T.2
  • 9
    • 0000202718 scopus 로고    scopus 로고
    • On applied research in machine learning
    • Provost F., and Kohavi R. On applied research in machine learning. Mach Learn 30 (1998) 127-132
    • (1998) Mach Learn , vol.30 , pp. 127-132
    • Provost, F.1    Kohavi, R.2
  • 11
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks
    • MacKay D.J.C. Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks. Network: Comput Neural Syst 6 (1995) 469-505
    • (1995) Network: Comput Neural Syst , vol.6 , pp. 469-505
    • MacKay, D.J.C.1
  • 12
    • 51749118484 scopus 로고    scopus 로고
    • Multi-class kernel logistic regression: a fixed-size implementation
    • Si J., Sun R., Brown D., King I., and Kasabov N. (Eds), IEEE Press, Los Alamitos
    • Karsmakers P., Pelckmans K., and Suykens J.A.K. Multi-class kernel logistic regression: a fixed-size implementation. In: Si J., Sun R., Brown D., King I., and Kasabov N. (Eds). Proceedings of the 20th International Joint Conference on Neural Networks (2007), IEEE Press, Los Alamitos 1756-1761
    • (2007) Proceedings of the 20th International Joint Conference on Neural Networks , pp. 1756-1761
    • Karsmakers, P.1    Pelckmans, K.2    Suykens, J.A.K.3
  • 13
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu T.F., Lin C.J., and Weng R.C. Probability estimates for multi-class classification by pairwise coupling. J Mach Learn Res 5 (2004) 975-1005
    • (2004) J Mach Learn Res , vol.5 , pp. 975-1005
    • Wu, T.F.1    Lin, C.J.2    Weng, R.C.3
  • 15
    • 0035019623 scopus 로고    scopus 로고
    • Comparing Bayesian neural network algorithms for classifying segmented outdoor images
    • Vivarelli F., and Williams C.K.I. Comparing Bayesian neural network algorithms for classifying segmented outdoor images. Neural Networks 14 (2001) 427-437
    • (2001) Neural Networks , vol.14 , pp. 427-437
    • Vivarelli, F.1    Williams, C.K.I.2
  • 17
    • 52349091540 scopus 로고    scopus 로고
    • Using Bayesian neural networks with ARD input selection to detect malignant ovarian masses prior to surgery
    • Van Calster B., Timmerman D., Nabney I.T., Valentin L., Testa A.C., Van Holsbeke C., et al. Using Bayesian neural networks with ARD input selection to detect malignant ovarian masses prior to surgery. Neural Comput Appl 17 (2008) 489-500
    • (2008) Neural Comput Appl , vol.17 , pp. 489-500
    • Van Calster, B.1    Timmerman, D.2    Nabney, I.T.3    Valentin, L.4    Testa, A.C.5    Van Holsbeke, C.6
  • 18
    • 0029754435 scopus 로고    scopus 로고
    • A review of Bayesian neural networks with an application to near infrared spectroscopy
    • Thodberg H.H. A review of Bayesian neural networks with an application to near infrared spectroscopy. IEEE Trans Neural Networks 7 (1996) 56-72
    • (1996) IEEE Trans Neural Networks , vol.7 , pp. 56-72
    • Thodberg, H.H.1
  • 20
    • 0043166415 scopus 로고    scopus 로고
    • Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines
    • Lu C., Van Gestel T., Suykens J.A.K., Van Huffel S., Vergote I., and Timmerman D. Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines. Artif Intell Med 28 (2003) 281-306
    • (2003) Artif Intell Med , vol.28 , pp. 281-306
    • Lu, C.1    Van Gestel, T.2    Suykens, J.A.K.3    Van Huffel, S.4    Vergote, I.5    Timmerman, D.6
  • 22
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • Smola A.J., Bartlett P.L., Scholkopf B., and Schuurmans D. (Eds), MIT Press, Cambridge
    • Platt J. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola A.J., Bartlett P.L., Scholkopf B., and Schuurmans D. (Eds). Advances in large margin classifiers (2000), MIT Press, Cambridge 61-74
    • (2000) Advances in large margin classifiers , pp. 61-74
    • Platt, J.1
  • 23
    • 0242456763 scopus 로고    scopus 로고
    • Transforming classifier scores into accurate multiclass probability estimates
    • Zaiane O.R., Goebel R., Hand D., Keim D., and Ng R. (Eds), ACM Press, New York
    • Zadrozny B., and Elkan C. Transforming classifier scores into accurate multiclass probability estimates. In: Zaiane O.R., Goebel R., Hand D., Keim D., and Ng R. (Eds). Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2002), ACM Press, New York 694-699
    • (2002) Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 694-699
    • Zadrozny, B.1    Elkan, C.2
  • 24
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1 (2001) 211-244
    • (2001) J Mach Learn Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 25
    • 38349079097 scopus 로고    scopus 로고
    • Comparing methods for multi-class probabilities in medical decision making using LS-SVMs and kernel logistic regression
    • Marques de Sa J., Alexandre L.A., Duch W., and Mandic D. (Eds), Springer, Berlin
    • Van Calster B., Luts J., Suykens J.A.K., Condous G., Bourne T., Timmerman D., Van S., and Huffel. Comparing methods for multi-class probabilities in medical decision making using LS-SVMs and kernel logistic regression. In: Marques de Sa J., Alexandre L.A., Duch W., and Mandic D. (Eds). Artificial neural networks-ICANN 2007, lecture notes in computer science vol. 4669 (2007), Springer, Berlin 139-148
    • (2007) Artificial neural networks-ICANN 2007, lecture notes in computer science , vol.4669 , pp. 139-148
    • Van Calster, B.1    Luts, J.2    Suykens, J.A.K.3    Condous, G.4    Bourne, T.5    Timmerman, D.6    Van, S.7    Huffel8
  • 26
    • 14344258243 scopus 로고    scopus 로고
    • Ensembles of nested dichotomies for multi-class problems
    • Greiner R., and Schuurmans D. (Eds), ACM Press, New York
    • Frank E., and Kramer S. Ensembles of nested dichotomies for multi-class problems. In: Greiner R., and Schuurmans D. (Eds). Proceedings of the 21st International Conference on Machine Learning (2004), ACM Press, New York 305-312
    • (2004) Proceedings of the 21st International Conference on Machine Learning , pp. 305-312
    • Frank, E.1    Kramer, S.2
  • 27
    • 15944424353 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • Zhu J., and Hastie T. Kernel logistic regression and the import vector machine. J Comput Graph Stat 14 (2005) 185-205
    • (2005) J Comput Graph Stat , vol.14 , pp. 185-205
    • Zhu, J.1    Hastie, T.2
  • 30
    • 0002900357 scopus 로고    scopus 로고
    • The case against accuracy estimation for comparing induction algorithms
    • Shavlik J.W. (Ed), Morgan Kaufmann, San Francisco
    • Provost F., Fawcett T., and Kohavi R. The case against accuracy estimation for comparing induction algorithms. In: Shavlik J.W. (Ed). Proceedings of the 15th International Conference on Machine Learning (1998), Morgan Kaufmann, San Francisco 445-453
    • (1998) Proceedings of the 15th International Conference on Machine Learning , pp. 445-453
    • Provost, F.1    Fawcett, T.2    Kohavi, R.3
  • 31
    • 0034728356 scopus 로고    scopus 로고
    • What do we mean by validating a prognostic model?
    • Altman D.G., and Royston P. What do we mean by validating a prognostic model?. Stat Med 19 (2000) 453-473
    • (2000) Stat Med , vol.19 , pp. 453-473
    • Altman, D.G.1    Royston, P.2
  • 32
    • 0034133182 scopus 로고    scopus 로고
    • Improving the practice of classifier performance assessment
    • Adams N.M., and Hand D.J. Improving the practice of classifier performance assessment. Neural Comput 12 (2000) 305-311
    • (2000) Neural Comput , vol.12 , pp. 305-311
    • Adams, N.M.1    Hand, D.J.2
  • 33
    • 0035530907 scopus 로고    scopus 로고
    • Measuring diagnostic accuracy of statistical prediction rules
    • Hand D.J. Measuring diagnostic accuracy of statistical prediction rules. Stat Neerl 55 (2001) 3-16
    • (2001) Stat Neerl , vol.55 , pp. 3-16
    • Hand, D.J.1
  • 34
    • 84880794162 scopus 로고    scopus 로고
    • AUC: a statistically consistent and more discriminating measure than accuracy
    • Gottlob G., and Walsh T. (Eds), Morgan Kaufmann, San Francisco
    • Ling C.X., Huang J., and Zhang H. AUC: a statistically consistent and more discriminating measure than accuracy. In: Gottlob G., and Walsh T. (Eds). Proceedings of the 18th International Joint Conference on Artificial Intelligence (2003), Morgan Kaufmann, San Francisco 519-526
    • (2003) Proceedings of the 18th International Joint Conference on Artificial Intelligence , pp. 519-526
    • Ling, C.X.1    Huang, J.2    Zhang, H.3
  • 35
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J.A., and McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1982) 29-36
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 36
    • 0033912712 scopus 로고    scopus 로고
    • Comparing three-class diagnostic tests by three-way ROC analysis
    • Dreiseitl S., Ohno-Machado L., and Binder M. Comparing three-class diagnostic tests by three-way ROC analysis. Med Decis Making 20 (2000) 323-331
    • (2000) Med Decis Making , vol.20 , pp. 323-331
    • Dreiseitl, S.1    Ohno-Machado, L.2    Binder, M.3
  • 37
    • 84882759063 scopus 로고    scopus 로고
    • An improved model selection heuristic for AUC
    • Kok J.N., Koronacki J., Lopez de Mantaras R., Matwin S., Mladenic D., and Skowron A. (Eds), Springer, Berlin
    • Wu S., Flach Q., and Ferri C. An improved model selection heuristic for AUC. In: Kok J.N., Koronacki J., Lopez de Mantaras R., Matwin S., Mladenic D., and Skowron A. (Eds). Machine learning-ECML 2007, lecture notes in computer science vol. 4701 (2007), Springer, Berlin 478-489
    • (2007) Machine learning-ECML 2007, lecture notes in computer science , vol.4701 , pp. 478-489
    • Wu, S.1    Flach, Q.2    Ferri, C.3
  • 39
    • 0037368548 scopus 로고    scopus 로고
    • Selecting differentially expressed genes from microarray experiments
    • Pepe M.S., Longton G., Anderson G.L., and Schummer M. Selecting differentially expressed genes from microarray experiments. Biometrics 59 (2003) 133-142
    • (2003) Biometrics , vol.59 , pp. 133-142
    • Pepe, M.S.1    Longton, G.2    Anderson, G.L.3    Schummer, M.4
  • 41
    • 27844542856 scopus 로고    scopus 로고
    • Do levels of serum cancer antigen 125 and creatine kinase predict the outcome in pregnancies of unknown location?
    • Condous G., Kirk E., Syed A., Van Calster B., Van Huffel S., Timmerman D., et al. Do levels of serum cancer antigen 125 and creatine kinase predict the outcome in pregnancies of unknown location?. Hum Reprod 20 (2005) 3348-3354
    • (2005) Hum Reprod , vol.20 , pp. 3348-3354
    • Condous, G.1    Kirk, E.2    Syed, A.3    Van Calster, B.4    Van Huffel, S.5    Timmerman, D.6
  • 44
    • 84971357232 scopus 로고
    • Prognostic models: clinically useful or quickly forgotten?
    • Wyatt J.C., and Altman D.G. Prognostic models: clinically useful or quickly forgotten?. BMJ 311 (1995) 1539-1541
    • (1995) BMJ , vol.311 , pp. 1539-1541
    • Wyatt, J.C.1    Altman, D.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.