-
2
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
John D. Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Int Conf on Machine Learning (ICML), 2001.
-
(2001)
Int Conf on Machine Learning (ICML)
-
-
Lafferty, J.D.1
McCallum, A.2
Pereira, F.3
-
6
-
-
55049091050
-
-
PhD thesis, University of California, Berkeley
-
Brian Milch, Bhaskara Marthi, and Stuart Russell. BLOG: Relational Modeling with Unknown Objects. PhD thesis, University of California, Berkeley, 2006.
-
(2006)
BLOG: Relational Modeling with Unknown Objects
-
-
Milch, B.1
Marthi, B.2
Russell, S.3
-
7
-
-
79959557444
-
Factorie: Efficient probabilistic programming via imperative declarations of structure, inference and learning
-
Vancouver, BC, Canda
-
Andrew McCallum, Khashayar Rohanimanesh, Michael Wick, Karl Schultz, and Sameer Singh. Factorie: Efficient probabilistic programming via imperative declarations of structure, inference and learning. In Neural Information Processing Systems(NIPS) Workshop on Probabilistic Programming, Vancouver, BC, Canda, 2008.
-
(2008)
Neural Information Processing Systems(NIPS) Workshop on Probabilistic Programming
-
-
McCallum, A.1
Rohanimanesh, K.2
Wick, M.3
Schultz, K.4
Singh, S.5
-
9
-
-
84898987614
-
Identity uncertainty and citation matching
-
MIT Press
-
Hanna Pasula, Bhaskara Marthi, Brian Milch, Stuart Russell, and Ilya Shpitser. Identity uncertainty and citation matching. In Advances in Neural Information Processing Systems 15. MIT Press, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
-
-
Pasula, H.1
Marthi, B.2
Milch, B.3
Russell, S.4
Shpitser, I.5
-
10
-
-
1842486852
-
A split-merge Markov chain Monte Carlo procedure for the dirichlet process mixture model
-
Sonia Jain and Radford M. Neal. A split-merge markov chain monte carlo procedure for the dirichlet process mixture model. Journal of Computational and Graphical Statistics, 13:158-182, 2004.
-
(2004)
Journal of Computational and Graphical Statistics
, vol.13
, pp. 158-182
-
-
Jain, S.1
Neal, R.M.2
-
13
-
-
33847202724
-
Learning to predict by the methods of temporal differences
-
Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, pages 9-44, 1988.
-
(1988)
Machine Learning
, pp. 9-44
-
-
Sutton, R.S.1
-
14
-
-
85156187730
-
Improving elevator performance using reinforcement learning
-
MIT Press
-
Robert H. Crites and Andrew G. Barto. Improving elevator performance using reinforcement learning. In Advances in Neural Information Processing Systems 8, pages 1017-1023. MIT Press, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 1017-1023
-
-
Crites, R.H.1
Barto, A.G.2
-
15
-
-
0010277513
-
Solving combinatorial optimization tasks by reinforcement learning: A general methodology applied to resource-constrained scheduling
-
Wei Zhang and Thomas G. Dietterich. Solving combinatorial optimization tasks by reinforcement learning: A general methodology applied to resource-constrained scheduling. Journal of Artificial Intelligence Reseach, 1, 2000.
-
Journal of Artificial Intelligence Reseach
, vol.1
, pp. 2000
-
-
Zhang, W.1
Dietterich, T.G.2
-
16
-
-
0029276036
-
Temporal difference learning and td-gammon
-
Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM, 38(3):58-68, 1995.
-
(1995)
Commun. ACM
, vol.38
, Issue.3
, pp. 58-68
-
-
Tesauro, G.1
-
17
-
-
85161983611
-
Reinforcement learning for map inference in large factor graphs
-
Amherst
-
Khashayar Rohanimanesh, Michael Wick, Sameer Singh, and Andrew McCallum. Reinforcement learning for map inference in large factor graphs. Technical Report #UM-CS-2008-040, University of Massachusetts, Amherst, 2008.
-
(2008)
Technical Report #UM-cs-2008-040, University of Massachusetts
-
-
Rohanimanesh, K.1
Wick, M.2
Singh, S.3
McCallum, A.4
-
19
-
-
34249833101
-
Q-learning
-
May
-
Christopher J. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279-292, May 1992.
-
(1992)
Machine Learning
, vol.8
, Issue.3
, pp. 279-292
-
-
Watkins, C.J.1
Dayan, P.2
-
20
-
-
33745789876
-
Piecewise training with parameter independence diagrams: Comparing globally- and locally-trained linear-chain CRFs
-
Andrew McCallum and Charles Sutton. Piecewise training with parameter independence diagrams: Comparing globally- and locally-trained linear-chain CRFs. In NIPS Workshop on Learning with Structured Outputs, 2004.
-
(2004)
NIPS Workshop on Learning with Structured Outputs
-
-
McCallum, A.1
Sutton, C.2
-
21
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
24
-
-
67650319921
-
Learning to map between ontologies on the semantic web
-
page 662
-
AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Y. Halevy. Learning to map between ontologies on the semantic web. In WWW, page 662, 2002.
-
(2002)
WWW
-
-
Doan, A.1
Madhavan, J.2
Domingos, P.3
Halevy, A.Y.4
-
26
-
-
24044449704
-
Learning evaluation functions to improve optimization by local search
-
Justin Boyan and Andrew W. Moore. Learning evaluation functions to improve optimization by local search. J. Mach. Learn. Res., 1:77-112, 2001.
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 77-112
-
-
Boyan, J.1
Moore, A.W.2
-
27
-
-
31844433245
-
Learning as search optimization: Approximate large margin methods for structured prediction
-
Hal Daumé III and Daniel Marcu. Learning as search optimization: approximate large margin methods for structured prediction. In International Conference on Machine learning (ICML), 2005.
-
(2005)
International Conference on Machine Learning (ICML)
-
-
Daumé III, H.1
Marcu, D.2
|