메뉴 건너뛰기




Volumn 41, Issue 15, 2014, Pages 6596-6610

Nonlinear time series forecasting with Bayesian neural networks

Author keywords

Bayesian neural networks; Gaussian approximation; Genetic algorithms; Hybrid Monte Carlo simulations; Nonlinear time series; Recursive hyperparameters

Indexed keywords

COMPLEX NETWORKS; FORECASTING; GENETIC ALGORITHMS; MONTE CARLO METHODS; NEURAL NETWORKS;

EID: 84902660037     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2014.04.035     Document Type: Article
Times cited : (56)

References (50)
  • 5
  • 6
    • 0031142667 scopus 로고    scopus 로고
    • An iterative pruning algorithm for feedforward neural networks
    • PII S1045922797017554
    • G. Castellano, A.M. Fanelli, and M. Pelillo An Iterative pruning algorithm for feedforward neural networks IEEE Transactions on Neural Networks 8 1997 519 531 (Pubitemid 127767797)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 519-531
    • Castellano, G.1    Fanelli, A.M.2    Pelillo, M.3
  • 11
    • 0003862815 scopus 로고    scopus 로고
    • (Ph.D. thesis). Trinity College University of Cambridge and Cambridge University Engineering Department
    • de Freitas, J. F. G. (2000). Bayesian methods for neural networks (Ph.D. thesis). Trinity College University of Cambridge and Cambridge University Engineering Department.
    • (2000) Bayesian Methods for Neural Networks
    • De Freitas, J.F.G.1
  • 15
    • 84902681440 scopus 로고
    • Addison-Wesley USA
    • D.E. Goldberg 1989 Addison-Wesley USA
    • (1989)
    • Goldberg, D.E.1
  • 19
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chain and their applications
    • W.K. Hastings Monte Carlo sampling methods using Markov chain and their applications Biometrica 57 1 1970 97 109
    • (1970) Biometrica , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 21
    • 76849097577 scopus 로고    scopus 로고
    • An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting
    • H.S. Hippert, and J.W. Taylor An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting Neural Networks 23 3 2010 386 395
    • (2010) Neural Networks , vol.23 , Issue.3 , pp. 386-395
    • Hippert, H.S.1    Taylor, J.W.2
  • 23
    • 0000840529 scopus 로고    scopus 로고
    • Bayesian Radial Basis Functions of Variable Dimension
    • C.C. Holmes, and B.K. Mallick Bayesian radial basis functions of variable dimension Neural Computation 10 5 1998 1217 1233 (Pubitemid 128463670)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1217-1233
    • Holmes, C.C.1    Mallick, B.K.2
  • 24
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • DOI 10.1109/TNN.2004.836241
    • G.B. Huang, P. Saratchandran, and N. Sundararajan A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation IEEE Transactions on Neural Networks 16 2005 57 67 (Pubitemid 40241910)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 26
    • 26444479778 scopus 로고
    • Optimization by simulating annealing
    • S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi Optimization by simulating annealing Science 220 4598 1983 671 680
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 28
    • 84902681442 scopus 로고    scopus 로고
    • Hierarchical bayesian learning in neural networks using genetic algorithms
    • July 8-12, 2013 in Bergamo, Italy
    • KocadaǧlI, O. (2013a). Hierarchical bayesian learning in neural networks using genetic algorithms. In 13th international conference on stochastic programming, July 8-12, 2013 in Bergamo, Italy.
    • (2013) 13th International Conference on Stochastic Programming
    • Kocadaǧli, O.1
  • 29
    • 84902681443 scopus 로고    scopus 로고
    • Bayesian learning with genetic algorithms and fuzzy membership functions for gaussian approximation of bayesian neural networks
    • July 1-4, 2013 in Rome, Italy
    • KocadaǧlI, O. (2013b). Bayesian learning with genetic algorithms and fuzzy membership functions for gaussian approximation of bayesian neural networks. In 26th Euro-Informs, July 1-4, 2013 in Rome, Italy.
    • (2013) 26th Euro-Informs
    • Kocadaǧli, O.1
  • 30
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks - Review and case Studies
    • J. Lampinen, and A. Vehtari Bayesian approach for neural networks - review and case Studies Neural Networks 14 3 2001 7 24
    • (2001) Neural Networks , vol.14 , Issue.3 , pp. 7-24
    • Lampinen, J.1    Vehtari, A.2
  • 31
    • 15244355385 scopus 로고    scopus 로고
    • Bayesian neural networks for nonlinear time series forecasting
    • DOI 10.1007/s11222-005-4786-8
    • F. Liang Bayesian neural networks for nonlinear time series forecasting Statistics and Computing 15 1 2005 13 29 (Pubitemid 40389960)
    • (2005) Statistics and Computing , vol.15 , Issue.1 , pp. 13-29
    • Liang, F.1
  • 32
    • 1542573405 scopus 로고    scopus 로고
    • Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models
    • F. Liang, and W.H. Wong Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models Journal of the American Statistical Association 96 454 2001 653 666
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.454 , pp. 653-666
    • Liang, F.1    Wong, W.H.2
  • 33
    • 34548502433 scopus 로고    scopus 로고
    • Predicting motor vehicle collisions using Bayesian neural network models: An empirical analysis
    • DOI 10.1016/j.aap.2006.12.014, PII S0001457507000073
    • D. Lord, Y. Xie, and Y. Zhang Predicting motor vehicle collisions using Bayesian neural network models: An empirical analysis Accident Analysis and Prevention 39 2007 922 933 (Pubitemid 47374052)
    • (2007) Accident Analysis and Prevention , vol.39 , Issue.5 , pp. 922-933
    • Xie, Y.1    Lord, D.2    Zhang, Y.3
  • 34
    • 0002704818 scopus 로고
    • A practical Bayesian framework for back propagation networks
    • D.J.C. Mackay A practical Bayesian framework for back propagation networks Neural Computation 4 3 1992 448 472
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • Mackay, D.J.C.1
  • 36
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • D.J.C. Mackay Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks Network: Computation in Neural Systems 6 3 1995 469 505
    • (1995) Network: Computation in Neural Systems , vol.6 , Issue.3 , pp. 469-505
    • Mackay, D.J.C.1
  • 37
    • 0010179838 scopus 로고    scopus 로고
    • An application of reversible-jump MCMC to multivariate spherical Gaussian mixtures
    • A.D. Marrs An application of reversible-jump MCMC to multivariate spherical Gaussian mixtures Advances in Neural Information Processing Systems 10 1998 577 583
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 577-583
    • Marrs, A.D.1
  • 39
    • 34250867328 scopus 로고    scopus 로고
    • Bayesian training of neural networks using genetic programming
    • DOI 10.1016/j.patrec.2007.03.004, PII S0167865507000967
    • T. Marwala Bayesian training of neural networks using genetic programming Pattern Recognition Letters 28 2007 1452 1458 (Pubitemid 46990583)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.12 , pp. 1452-1458
    • Marwala, T.1
  • 42
    • 76749091461 scopus 로고    scopus 로고
    • Recursive Bayesian recurrent neural networks for time-series modeling
    • D.T. Mirikitani Recursive Bayesian recurrent neural networks for time-series modeling IEEE Transactions on Neural Networks 21 2 2010 262 274
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.2 , pp. 262-274
    • Mirikitani, D.T.1
  • 47
    • 26944442012 scopus 로고    scopus 로고
    • Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination
    • DOI 10.1016/j.ijforecast.2005.04.010, PII S0169207005000464
    • T. Teräsvirta, D. van Dijk, and M.C. Medeiros Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination International Journal of Forecasting 21 4 2005 755 774 (Pubitemid 41472401)
    • (2005) International Journal of Forecasting , vol.21 , Issue.4 , pp. 755-774
    • Terasvirta, T.1    Van Dijk, D.2    Medeiros, M.C.3
  • 49
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • P.M. Williams Bayesian regularization and pruning using a Laplace prior Neural Computation 7 1 1995 117 143
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 117-143
    • Williams, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.