-
6
-
-
0031142667
-
An iterative pruning algorithm for feedforward neural networks
-
PII S1045922797017554
-
G. Castellano, A.M. Fanelli, and M. Pelillo An Iterative pruning algorithm for feedforward neural networks IEEE Transactions on Neural Networks 8 1997 519 531 (Pubitemid 127767797)
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.3
, pp. 519-531
-
-
Castellano, G.1
Fanelli, A.M.2
Pelillo, M.3
-
11
-
-
0003862815
-
-
(Ph.D. thesis). Trinity College University of Cambridge and Cambridge University Engineering Department
-
de Freitas, J. F. G. (2000). Bayesian methods for neural networks (Ph.D. thesis). Trinity College University of Cambridge and Cambridge University Engineering Department.
-
(2000)
Bayesian Methods for Neural Networks
-
-
De Freitas, J.F.G.1
-
15
-
-
84902681440
-
-
Addison-Wesley USA
-
D.E. Goldberg 1989 Addison-Wesley USA
-
(1989)
-
-
Goldberg, D.E.1
-
19
-
-
77956890234
-
Monte Carlo sampling methods using Markov chain and their applications
-
W.K. Hastings Monte Carlo sampling methods using Markov chain and their applications Biometrica 57 1 1970 97 109
-
(1970)
Biometrica
, vol.57
, Issue.1
, pp. 97-109
-
-
Hastings, W.K.1
-
21
-
-
76849097577
-
An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting
-
H.S. Hippert, and J.W. Taylor An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting Neural Networks 23 3 2010 386 395
-
(2010)
Neural Networks
, vol.23
, Issue.3
, pp. 386-395
-
-
Hippert, H.S.1
Taylor, J.W.2
-
23
-
-
0000840529
-
Bayesian Radial Basis Functions of Variable Dimension
-
C.C. Holmes, and B.K. Mallick Bayesian radial basis functions of variable dimension Neural Computation 10 5 1998 1217 1233 (Pubitemid 128463670)
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1217-1233
-
-
Holmes, C.C.1
Mallick, B.K.2
-
24
-
-
13844256702
-
A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
-
DOI 10.1109/TNN.2004.836241
-
G.B. Huang, P. Saratchandran, and N. Sundararajan A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation IEEE Transactions on Neural Networks 16 2005 57 67 (Pubitemid 40241910)
-
(2005)
IEEE Transactions on Neural Networks
, vol.16
, Issue.1
, pp. 57-67
-
-
Huang, G.-B.1
Saratchandran, P.2
Sundararajan, N.3
-
26
-
-
26444479778
-
Optimization by simulating annealing
-
S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi Optimization by simulating annealing Science 220 4598 1983 671 680
-
(1983)
Science
, vol.220
, Issue.4598
, pp. 671-680
-
-
Kirkpatrick, S.1
Gelatt, C.D.2
Vecchi, M.P.3
-
28
-
-
84902681442
-
Hierarchical bayesian learning in neural networks using genetic algorithms
-
July 8-12, 2013 in Bergamo, Italy
-
KocadaǧlI, O. (2013a). Hierarchical bayesian learning in neural networks using genetic algorithms. In 13th international conference on stochastic programming, July 8-12, 2013 in Bergamo, Italy.
-
(2013)
13th International Conference on Stochastic Programming
-
-
Kocadaǧli, O.1
-
29
-
-
84902681443
-
Bayesian learning with genetic algorithms and fuzzy membership functions for gaussian approximation of bayesian neural networks
-
July 1-4, 2013 in Rome, Italy
-
KocadaǧlI, O. (2013b). Bayesian learning with genetic algorithms and fuzzy membership functions for gaussian approximation of bayesian neural networks. In 26th Euro-Informs, July 1-4, 2013 in Rome, Italy.
-
(2013)
26th Euro-Informs
-
-
Kocadaǧli, O.1
-
30
-
-
0035312886
-
Bayesian approach for neural networks - Review and case Studies
-
J. Lampinen, and A. Vehtari Bayesian approach for neural networks - review and case Studies Neural Networks 14 3 2001 7 24
-
(2001)
Neural Networks
, vol.14
, Issue.3
, pp. 7-24
-
-
Lampinen, J.1
Vehtari, A.2
-
31
-
-
15244355385
-
Bayesian neural networks for nonlinear time series forecasting
-
DOI 10.1007/s11222-005-4786-8
-
F. Liang Bayesian neural networks for nonlinear time series forecasting Statistics and Computing 15 1 2005 13 29 (Pubitemid 40389960)
-
(2005)
Statistics and Computing
, vol.15
, Issue.1
, pp. 13-29
-
-
Liang, F.1
-
32
-
-
1542573405
-
Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models
-
F. Liang, and W.H. Wong Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models Journal of the American Statistical Association 96 454 2001 653 666
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.454
, pp. 653-666
-
-
Liang, F.1
Wong, W.H.2
-
33
-
-
34548502433
-
Predicting motor vehicle collisions using Bayesian neural network models: An empirical analysis
-
DOI 10.1016/j.aap.2006.12.014, PII S0001457507000073
-
D. Lord, Y. Xie, and Y. Zhang Predicting motor vehicle collisions using Bayesian neural network models: An empirical analysis Accident Analysis and Prevention 39 2007 922 933 (Pubitemid 47374052)
-
(2007)
Accident Analysis and Prevention
, vol.39
, Issue.5
, pp. 922-933
-
-
Xie, Y.1
Lord, D.2
Zhang, Y.3
-
34
-
-
0002704818
-
A practical Bayesian framework for back propagation networks
-
D.J.C. Mackay A practical Bayesian framework for back propagation networks Neural Computation 4 3 1992 448 472
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 448-472
-
-
Mackay, D.J.C.1
-
36
-
-
0001441372
-
Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
-
D.J.C. Mackay Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks Network: Computation in Neural Systems 6 3 1995 469 505
-
(1995)
Network: Computation in Neural Systems
, vol.6
, Issue.3
, pp. 469-505
-
-
Mackay, D.J.C.1
-
37
-
-
0010179838
-
An application of reversible-jump MCMC to multivariate spherical Gaussian mixtures
-
A.D. Marrs An application of reversible-jump MCMC to multivariate spherical Gaussian mixtures Advances in Neural Information Processing Systems 10 1998 577 583
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 577-583
-
-
Marrs, A.D.1
-
39
-
-
34250867328
-
Bayesian training of neural networks using genetic programming
-
DOI 10.1016/j.patrec.2007.03.004, PII S0167865507000967
-
T. Marwala Bayesian training of neural networks using genetic programming Pattern Recognition Letters 28 2007 1452 1458 (Pubitemid 46990583)
-
(2007)
Pattern Recognition Letters
, vol.28
, Issue.12
, pp. 1452-1458
-
-
Marwala, T.1
-
40
-
-
5744249209
-
Equations of state calculations by fast computing machines
-
N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller Equations of state calculations by fast computing machines Journal of Chemical Physics 21 6 1953 1087 1092
-
(1953)
Journal of Chemical Physics
, vol.21
, Issue.6
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
42
-
-
76749091461
-
Recursive Bayesian recurrent neural networks for time-series modeling
-
D.T. Mirikitani Recursive Bayesian recurrent neural networks for time-series modeling IEEE Transactions on Neural Networks 21 2 2010 262 274
-
(2010)
IEEE Transactions on Neural Networks
, vol.21
, Issue.2
, pp. 262-274
-
-
Mirikitani, D.T.1
-
45
-
-
0011374843
-
-
Technical report AIM-1467, Artificial intelligence laboratory, Massachusetts institute of technology, MA
-
Niyogi, P. & Girosi, F. (1994). On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. Technical report AIM-1467, Artificial intelligence laboratory, Massachusetts institute of technology, MA.
-
(1994)
On the Relationship between Generalization Error, Hypothesis Complexity, and Sample Complexity for Radial Basis Functions
-
-
Niyogi, P.1
Girosi, F.2
-
47
-
-
26944442012
-
Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination
-
DOI 10.1016/j.ijforecast.2005.04.010, PII S0169207005000464
-
T. Teräsvirta, D. van Dijk, and M.C. Medeiros Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination International Journal of Forecasting 21 4 2005 755 774 (Pubitemid 41472401)
-
(2005)
International Journal of Forecasting
, vol.21
, Issue.4
, pp. 755-774
-
-
Terasvirta, T.1
Van Dijk, D.2
Medeiros, M.C.3
-
49
-
-
0000673452
-
Bayesian regularization and pruning using a Laplace prior
-
P.M. Williams Bayesian regularization and pruning using a Laplace prior Neural Computation 7 1 1995 117 143
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 117-143
-
-
Williams, P.M.1
|