-
1
-
-
66349125304
-
Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms
-
Beck C.W., Izpisua Belmonte J.C., Christen B. Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev. Dyn. 2009, 238:1226-1248.
-
(2009)
Dev. Dyn.
, vol.238
, pp. 1226-1248
-
-
Beck, C.W.1
Izpisua Belmonte, J.C.2
Christen, B.3
-
2
-
-
0032841707
-
In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle
-
Cooper R.N., Tajbakhsh S., Mouly V., Cossu G., Buckingham M., Butler-Browne G.S. In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J. Cell Sci. 1999, 112(Pt 17):2895-2901.
-
(1999)
J. Cell Sci.
, vol.112
, Issue.PART 17
, pp. 2895-2901
-
-
Cooper, R.N.1
Tajbakhsh, S.2
Mouly, V.3
Cossu, G.4
Buckingham, M.5
Butler-Browne, G.S.6
-
3
-
-
33745892938
-
Control of muscle regeneration in the Xenopus tadpole tail by Pax7
-
Chen Y., Lin G., Slack J.M. Control of muscle regeneration in the Xenopus tadpole tail by Pax7. Development 2006, 133:2303-2313.
-
(2006)
Development
, vol.133
, pp. 2303-2313
-
-
Chen, Y.1
Lin, G.2
Slack, J.M.3
-
4
-
-
24144489118
-
Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis
-
Wagers A.J., Conboy I.M. Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 2005, 122:659-667.
-
(2005)
Cell
, vol.122
, pp. 659-667
-
-
Wagers, A.J.1
Conboy, I.M.2
-
5
-
-
0016706446
-
Regeneration of the tail bud in Xenopus embryos
-
Deuchar E.M. Regeneration of the tail bud in Xenopus embryos. J. Exp. Zool. 1975, 192:381-390.
-
(1975)
J. Exp. Zool.
, vol.192
, pp. 381-390
-
-
Deuchar, E.M.1
-
6
-
-
12444342233
-
Regeneration in isolated tails of Xenopus larvae
-
Hauser R., Lehmann F.E. Regeneration in isolated tails of Xenopus larvae. Experientia 1962, 18:83-84.
-
(1962)
Experientia
, vol.18
, pp. 83-84
-
-
Hauser, R.1
Lehmann, F.E.2
-
7
-
-
2542467079
-
Cell lineage tracing during Xenopus tail regeneration
-
Gargioli C., Slack J.M. Cell lineage tracing during Xenopus tail regeneration. Development 2004, 131:2669-2679.
-
(2004)
Development
, vol.131
, pp. 2669-2679
-
-
Gargioli, C.1
Slack, J.M.2
-
8
-
-
0000642664
-
Satellite cell of skeletal muscle fibers
-
Mauro A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 1961, 9:493-495.
-
(1961)
J. Biophys. Biochem. Cytol.
, vol.9
, pp. 493-495
-
-
Mauro, A.1
-
9
-
-
0019571662
-
Changes in the satellite cell population during postnatal growth of pig skeletal muscle
-
Campion D.R., Richardson R.L., Reagan J.O., Kraeling R.R. Changes in the satellite cell population during postnatal growth of pig skeletal muscle. J. Anim. Sci. 1981, 52:1014-1018.
-
(1981)
J. Anim. Sci.
, vol.52
, pp. 1014-1018
-
-
Campion, D.R.1
Richardson, R.L.2
Reagan, J.O.3
Kraeling, R.R.4
-
10
-
-
0018195013
-
Electron microscope observations on human fetal striated muscle
-
Gamble H.J., Fenton J., Allsopp G. Electron microscope observations on human fetal striated muscle. J. Anat. 1978, 126:567-589.
-
(1978)
J. Anat.
, vol.126
, pp. 567-589
-
-
Gamble, H.J.1
Fenton, J.2
Allsopp, G.3
-
11
-
-
0026779823
-
Skeletal muscle satellite cells appear during late chicken embryogenesis
-
Hartley R.S., Bandman E., Yablonka-Reuveni Z. Skeletal muscle satellite cells appear during late chicken embryogenesis. Dev. Biol. 1992, 153:206-216.
-
(1992)
Dev. Biol.
, vol.153
, pp. 206-216
-
-
Hartley, R.S.1
Bandman, E.2
Yablonka-Reuveni, Z.3
-
12
-
-
0015981715
-
Satellite cells in mature, uninjured skeletal muscle of the lizard tail
-
Kahn E.B., Simpson S.B. Satellite cells in mature, uninjured skeletal muscle of the lizard tail. Dev. Biol. 1974, 37:219-223.
-
(1974)
Dev. Biol.
, vol.37
, pp. 219-223
-
-
Kahn, E.B.1
Simpson, S.B.2
-
13
-
-
0029913205
-
Satellite cell proliferative compartments in growing skeletal muscles
-
Schultz E. Satellite cell proliferative compartments in growing skeletal muscles. Dev. Biol. 1996, 175:84-94.
-
(1996)
Dev. Biol.
, vol.175
, pp. 84-94
-
-
Schultz, E.1
-
14
-
-
0027332965
-
2+ in developing Xenopus neurons
-
2+ in developing Xenopus neurons. J. Neurosci. 1993, 13:4936-4948.
-
(1993)
J. Neurosci.
, vol.13
, pp. 4936-4948
-
-
Gu, X.1
Spitzer, N.C.2
-
15
-
-
0025148297
-
Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture
-
Holliday J., Spitzer N.C. Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture. Dev. Biol. 1990, 141:13-23.
-
(1990)
Dev. Biol.
, vol.141
, pp. 13-23
-
-
Holliday, J.1
Spitzer, N.C.2
-
16
-
-
2942532192
-
Activity-dependent homeostatic specification of transmitter expression in embryonic neurons
-
Borodinsky L.N., Root C.M., Cronin J.A., Sann S.B., Gu X., Spitzer N.C. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 2004, 429:523-530.
-
(2004)
Nature
, vol.429
, pp. 523-530
-
-
Borodinsky, L.N.1
Root, C.M.2
Cronin, J.A.3
Sann, S.B.4
Gu, X.5
Spitzer, N.C.6
-
17
-
-
77955479581
-
Activity-dependent expression of Lmx1b regulates specification of serotonergic neurons modulating swimming behavior
-
Demarque M., Spitzer N.C. Activity-dependent expression of Lmx1b regulates specification of serotonergic neurons modulating swimming behavior. Neuron 2010, 67:321-334.
-
(2010)
Neuron
, vol.67
, pp. 321-334
-
-
Demarque, M.1
Spitzer, N.C.2
-
18
-
-
56249085582
-
Illumination controls differentiation of dopamine neurons regulating behaviour
-
Dulcis D., Spitzer N.C. Illumination controls differentiation of dopamine neurons regulating behaviour. Nature 2008, 456:195-201.
-
(2008)
Nature
, vol.456
, pp. 195-201
-
-
Dulcis, D.1
Spitzer, N.C.2
-
19
-
-
77955053220
-
CJun integrates calcium activity and tlx3 expression to regulate neurotransmitter specification
-
Marek K.W., Kurtz L.M., Spitzer N.C. cJun integrates calcium activity and tlx3 expression to regulate neurotransmitter specification. Nat. Neurosci. 2010, 13:944-950.
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 944-950
-
-
Marek, K.W.1
Kurtz, L.M.2
Spitzer, N.C.3
-
20
-
-
0033568468
-
Calcium signaling in the developing Xenopus myotome
-
Ferrari M.B., Spitzer N.C. Calcium signaling in the developing Xenopus myotome. Dev. Biol. 1999, 213:269-282.
-
(1999)
Dev. Biol.
, vol.213
, pp. 269-282
-
-
Ferrari, M.B.1
Spitzer, N.C.2
-
21
-
-
4444222881
-
Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex
-
Weissman T.A., Riquelme P.A., Ivic L., Flint A.C., Kriegstein A.R. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 2004, 43:647-661.
-
(2004)
Neuron
, vol.43
, pp. 647-661
-
-
Weissman, T.A.1
Riquelme, P.A.2
Ivic, L.3
Flint, A.C.4
Kriegstein, A.R.5
-
22
-
-
4444220199
-
GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone
-
Bolteus A.J., Bordey A. GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J. Neurosci.: Off. J. Soc. Neurosci. 2004, 24:7623-7631.
-
(2004)
J. Neurosci.: Off. J. Soc. Neurosci.
, vol.24
, pp. 7623-7631
-
-
Bolteus, A.J.1
Bordey, A.2
-
23
-
-
64149128876
-
KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner
-
Bortone D., Polleux F. KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 2009, 62:53-71.
-
(2009)
Neuron
, vol.62
, pp. 53-71
-
-
Bortone, D.1
Polleux, F.2
-
24
-
-
34248195467
-
H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration
-
Adams D.S., Masi A., Levin M. H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 2007, 134:1323-1335.
-
(2007)
Development
, vol.134
, pp. 1323-1335
-
-
Adams, D.S.1
Masi, A.2
Levin, M.3
-
25
-
-
77957330469
-
Induction of vertebrate regeneration by a transient sodium current
-
Tseng A.S., Beane W.S., Lemire J.M., Masi A., Levin M. Induction of vertebrate regeneration by a transient sodium current. J. Neurosci.: Off. J. Soc. Neurosci. 2010, 30:13192-13200.
-
(2010)
J. Neurosci.: Off. J. Soc. Neurosci.
, vol.30
, pp. 13192-13200
-
-
Tseng, A.S.1
Beane, W.S.2
Lemire, J.M.3
Masi, A.4
Levin, M.5
-
26
-
-
79952733097
-
Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord
-
Belgacem Y.H., Borodinsky L.N. Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:4482-4487.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 4482-4487
-
-
Belgacem, Y.H.1
Borodinsky, L.N.2
-
27
-
-
84867054067
-
Interplay between electrical activity and bone morphogenetic protein signaling regulates spinal neuron differentiation
-
Swapna I., Borodinsky L.N. Interplay between electrical activity and bone morphogenetic protein signaling regulates spinal neuron differentiation. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:16336-16341.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 16336-16341
-
-
Swapna, I.1
Borodinsky, L.N.2
-
28
-
-
33846065839
-
Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction
-
Borodinsky L.N., Spitzer N.C. Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:335-340.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 335-340
-
-
Borodinsky, L.N.1
Spitzer, N.C.2
-
30
-
-
0030587612
-
Spontaneous calcium transients regulate myofibrillogenesis in embryonic Xenopus myocytes
-
Ferrari M.B., Rohrbough J., Spitzer N.C. Spontaneous calcium transients regulate myofibrillogenesis in embryonic Xenopus myocytes. Dev. Biol. 1996, 178:484-497.
-
(1996)
Dev. Biol.
, vol.178
, pp. 484-497
-
-
Ferrari, M.B.1
Rohrbough, J.2
Spitzer, N.C.3
-
31
-
-
0032526950
-
A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes
-
Ferrari M.B., Ribbeck K., Hagler D.J., Spitzer N.C. A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes. J. Cell Biol. 1998, 141:1349-1356.
-
(1998)
J. Cell Biol.
, vol.141
, pp. 1349-1356
-
-
Ferrari, M.B.1
Ribbeck, K.2
Hagler, D.J.3
Spitzer, N.C.4
-
32
-
-
33646438500
-
Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis
-
Campbell N.R., Podugu S.P., Ferrari M.B. Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis. Dev. Biol. 2006, 292:253-264.
-
(2006)
Dev. Biol.
, vol.292
, pp. 253-264
-
-
Campbell, N.R.1
Podugu, S.P.2
Ferrari, M.B.3
-
33
-
-
33845602214
-
Apoptosis is required during early stages of tail regeneration in Xenopus laevis
-
Tseng A.S., Adams D.S., Qiu D., Koustubhan P., Levin M. Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev. Biol. 2007, 301:62-69.
-
(2007)
Dev. Biol.
, vol.301
, pp. 62-69
-
-
Tseng, A.S.1
Adams, D.S.2
Qiu, D.3
Koustubhan, P.4
Levin, M.5
-
34
-
-
39249083835
-
TGF-beta signaling is required for multiple processes during Xenopus tail regeneration
-
Ho D.M., Whitman M. TGF-beta signaling is required for multiple processes during Xenopus tail regeneration. Dev. Biol. 2008, 315:203-216.
-
(2008)
Dev. Biol.
, vol.315
, pp. 203-216
-
-
Ho, D.M.1
Whitman, M.2
-
35
-
-
0033535975
-
GABA induces proliferation of immature cerebellar granule cells grown in vitro
-
Fiszman M.L., Borodinsky L.N., Neale J.H. GABA induces proliferation of immature cerebellar granule cells grown in vitro. Brain Res. Dev. Brain Res. 1999, 115:1-8.
-
(1999)
Brain Res. Dev. Brain Res.
, vol.115
, pp. 1-8
-
-
Fiszman, M.L.1
Borodinsky, L.N.2
Neale, J.H.3
-
36
-
-
0032540250
-
Extracellular potassium concentration regulates proliferation of immature cerebellar granule cells
-
Borodinsky L.N., Fiszman M.L. Extracellular potassium concentration regulates proliferation of immature cerebellar granule cells. Brain Res. Dev. Brain Res. 1998, 107:43-48.
-
(1998)
Brain Res. Dev. Brain Res.
, vol.107
, pp. 43-48
-
-
Borodinsky, L.N.1
Fiszman, M.L.2
-
37
-
-
84890283768
-
ORAI1 calcium channel orchestrates skin homeostasis
-
Vandenberghe M., Raphael M., Lehen'kyi V., Gordienko D., Hastie R., Oddos T., Rao A., Hogan P.G., Skryma R., Prevarskaya N. ORAI1 calcium channel orchestrates skin homeostasis. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:E4839-E4848.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
-
-
Vandenberghe, M.1
Raphael, M.2
Lehen'kyi, V.3
Gordienko, D.4
Hastie, R.5
Oddos, T.6
Rao, A.7
Hogan, P.G.8
Skryma, R.9
Prevarskaya, N.10
-
38
-
-
84879701435
-
Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly
-
Soto X., Li J., Lea R., Dubaissi E., Papalopulu N., Amaya E. Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:11029-11034.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 11029-11034
-
-
Soto, X.1
Li, J.2
Lea, R.3
Dubaissi, E.4
Papalopulu, N.5
Amaya, E.6
-
39
-
-
38349138850
-
Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles
-
Taniguchi Y., Sugiura T., Tazaki A., Watanabe K., Mochii M. Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles. Dev. Growth Differ. 2008, 50:109-120.
-
(2008)
Dev. Growth Differ.
, vol.50
, pp. 109-120
-
-
Taniguchi, Y.1
Sugiura, T.2
Tazaki, A.3
Watanabe, K.4
Mochii, M.5
-
40
-
-
0034237708
-
The EGF-CFC gene family in vertebrate development
-
Shen M.M., Schier A.F. The EGF-CFC gene family in vertebrate development. Trends Genet.: TIG 2000, 16:303-309.
-
(2000)
Trends Genet.: TIG
, vol.16
, pp. 303-309
-
-
Shen, M.M.1
Schier, A.F.2
-
41
-
-
84869746270
-
Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin
-
Guardiola O., Lafuste P., Brunelli S., Iaconis S., Touvier T., Mourikis P., De Bock K., Lonardo E., Andolfi G., Bouche A., Liguori G.L., Shen M.M., Tajbakhsh S., Cossu G., Carmeliet P., Minchiotti G. Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:E3231-E3240.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
-
-
Guardiola, O.1
Lafuste, P.2
Brunelli, S.3
Iaconis, S.4
Touvier, T.5
Mourikis, P.6
De Bock, K.7
Lonardo, E.8
Andolfi, G.9
Bouche, A.10
Liguori, G.L.11
Shen, M.M.12
Tajbakhsh, S.13
Cossu, G.14
Carmeliet, P.15
Minchiotti, G.16
-
43
-
-
84871671645
-
Insights into skeletal muscle development and applications in regenerative medicine
-
Tran T., Andersen R., Sherman S.P., Pyle A.D. Insights into skeletal muscle development and applications in regenerative medicine. Int. Rev. Cell Mol. Biol. 2013, 300:51-83.
-
(2013)
Int. Rev. Cell Mol. Biol.
, vol.300
, pp. 51-83
-
-
Tran, T.1
Andersen, R.2
Sherman, S.P.3
Pyle, A.D.4
-
44
-
-
84856118451
-
A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state
-
Mourikis P., Sambasivan R., Castel D., Rocheteau P., Bizzarro V., Tajbakhsh S. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 2012, 30:243-252.
-
(2012)
Stem Cells
, vol.30
, pp. 243-252
-
-
Mourikis, P.1
Sambasivan, R.2
Castel, D.3
Rocheteau, P.4
Bizzarro, V.5
Tajbakhsh, S.6
-
45
-
-
84859316005
-
TRAF6 promotes myogenic differentiation via the TAK1/p38 mitogen-activated protein kinase and Akt pathways
-
Xiao F., Wang H., Fu X., Li Y., Wu Z. TRAF6 promotes myogenic differentiation via the TAK1/p38 mitogen-activated protein kinase and Akt pathways. PLoS ONE 2012, 7:e34081.
-
(2012)
PLoS ONE
, vol.7
-
-
Xiao, F.1
Wang, H.2
Fu, X.3
Li, Y.4
Wu, Z.5
-
46
-
-
0028277844
-
Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras
-
Rosen L.B., Ginty D.D., Weber M.J., Greenberg M.E. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 1994, 12:1207-1221.
-
(1994)
Neuron
, vol.12
, pp. 1207-1221
-
-
Rosen, L.B.1
Ginty, D.D.2
Weber, M.J.3
Greenberg, M.E.4
-
47
-
-
15644378821
-
Cripto enhances the tyrosine phosphorylation of Shc and activates mitogen-activated protein kinase (MAPK) in mammary epithelial cells
-
Kannan S., De Santis M., Lohmeyer M., Riese D.J., Smith G.H., Hynes N., Seno M., Brandt R., Bianco C., Persico G., Kenney N., Normanno N., Martinez-Lacaci I., Ciardiello F., Stern D.F., Gullick W.J., Salomon D.S. Cripto enhances the tyrosine phosphorylation of Shc and activates mitogen-activated protein kinase (MAPK) in mammary epithelial cells. J. Biol. Chem. 1997, 272:3330-3335.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 3330-3335
-
-
Kannan, S.1
De Santis, M.2
Lohmeyer, M.3
Riese, D.J.4
Smith, G.H.5
Hynes, N.6
Seno, M.7
Brandt, R.8
Bianco, C.9
Persico, G.10
Kenney, N.11
Normanno, N.12
Martinez-Lacaci, I.13
Ciardiello, F.14
Stern, D.F.15
Gullick, W.J.16
Salomon, D.S.17
-
48
-
-
84873410016
-
Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration
-
Love N.R., Chen Y., Ishibashi S., Kritsiligkou P., Lea R., Koh Y., Gallop J.L., Dorey K., Amaya E. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat. Cell Biol. 2013, 15:222-228.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 222-228
-
-
Love, N.R.1
Chen, Y.2
Ishibashi, S.3
Kritsiligkou, P.4
Lea, R.5
Koh, Y.6
Gallop, J.L.7
Dorey, K.8
Amaya, E.9
-
49
-
-
37649011632
-
Structural differentiation of skeletal muscle fibers in the absence of innervation in humans
-
Boncompagni S., Kern H., Rossini K., Hofer C., Mayr W., Carraro U., Protasi F. Structural differentiation of skeletal muscle fibers in the absence of innervation in humans. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:19339-19344.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 19339-19344
-
-
Boncompagni, S.1
Kern, H.2
Rossini, K.3
Hofer, C.4
Mayr, W.5
Carraro, U.6
Protasi, F.7
|