메뉴 건너뛰기




Volumn 43, Issue 1, 2014, Pages 233-255

Energetics of membrane protein folding

Author keywords

Protein lipid interactions; Thermodynamics

Indexed keywords

BACTERIORHODOPSIN; DETERGENT; DIACYLGLYCEROL KINASE; GLYCOPHORIN A; LIPID; MEMBRANE PROTEIN; OMPLA PROTEIN; OMPW PROTEIN; PAGP PROTEIN; PERIPHERAL MYELIN PROTEIN 22; PROTEIN; UNCLASSIFIED DRUG; WATER;

EID: 84901986762     PISSN: 1936122X     EISSN: 19361238     Source Type: Book Series    
DOI: 10.1146/annurev-biophys-051013-022926     Document Type: Article
Times cited : (63)

References (96)
  • 1
    • 0036568229 scopus 로고    scopus 로고
    • Interhelical hydrogen bonds and spatial motifs in membrane proteins: Polar clamps and serine zippers
    • Adamian L, Liang J. 2002. Interhelical hydrogen bonds and spatial motifs in membrane proteins: polar clamps and serine zippers. Proteins 47:209-188
    • (2002) Proteins , vol.47 , pp. 209-188
    • Adamian, L.1    Liang, J.2
  • 2
    • 17844379225 scopus 로고    scopus 로고
    • Empirical lipid propensities of amino acid residues in multispan alpha helical membrane proteins
    • Adamian L, Nanda V, DeGrado WF, Liang J. 2005. Empirical lipid propensities of amino acid residues in multispan alpha helical membrane proteins. Proteins 59:496-5099
    • (2005) Proteins , vol.59 , pp. 496-5099
    • Adamian, L.1    Nanda, V.2    Degrado, W.F.3    Liang, J.4
  • 3
    • 0035957523 scopus 로고    scopus 로고
    • Structure and function in bacteriorhodopsin: The effect of the interhelical loops on the protein folding kinetics
    • Allen SJ, Kim JM, Khorana HG, Lu H, Booth PJ. 2001. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics. J. Mol. Biol. 308:423-355
    • (2001) J. Mol. Biol. , vol.308 , pp. 423-355
    • Allen, S.J.1    Kim, J.M.2    Khorana, H.G.3    Lu, H.4    Booth, P.J.5
  • 4
    • 33846866479 scopus 로고    scopus 로고
    • Developmental abnormalities in the nerves of peripheral myelin protein 22-deficient mice
    • Amici SA, Dunn WA Jr, Notterpek L. 2007. Developmental abnormalities in the nerves of peripheral myelin protein 22-deficient mice. J. Neurosci. Res. 85:238-499
    • (2007) J. Neurosci. Res. , vol.85 , pp. 238-499
    • Amici, S.A.1    Dunn, W.A.J.R.2    Notterpek, L.3
  • 5
    • 0015859467 scopus 로고
    • Principles that govern the folding of protein chains
    • Anfinsen CB. 1973. Principles that govern the folding of protein chains. Science 181:223-300
    • (1973) Science , vol.181 , pp. 223-300
    • Anfinsen, C.B.1
  • 6
    • 0032006712 scopus 로고    scopus 로고
    • The role of the ribosome-translocon complex in translation and assembly of polytopic membrane proteins
    • Bibi E. 1998. The role of the ribosome-translocon complex in translation and assembly of polytopic membrane proteins. Trends Biochem. Sci. 23:51-555
    • (1998) Trends Biochem. Sci. , vol.23 , pp. 51-555
    • Bibi, E.1
  • 7
    • 0030904764 scopus 로고    scopus 로고
    • Intermediates in the assembly of bacteriorhodopsin investigated by timeresolved absorption spectroscopy
    • Booth PJ, Farooq A. 1997. Intermediates in the assembly of bacteriorhodopsin investigated by timeresolved absorption spectroscopy. Eur. J. Biochem. 246:674-800
    • (1997) Eur. J. Biochem. , vol.246 , pp. 674-800
    • Booth, P.J.1    Farooq, A.2
  • 8
    • 0029943869 scopus 로고    scopus 로고
    • Retinal binding during folding and assembly of the membrane protein bacteriorhodopsin
    • Booth PJ, Farooq A, Flitsch SL. 1996. Retinal binding during folding and assembly of the membrane protein bacteriorhodopsin. Biochemistry 35:5902-99
    • (1996) Biochemistry , vol.35 , pp. 5902-5999
    • Booth, P.J.1    Farooq, A.2    Flitsch, S.L.3
  • 10
    • 84857650575 scopus 로고    scopus 로고
    • Thermodynamic stability of bacteriorhodopsin mutants measured relative to the bacterioopsin unfolded state
    • Cao Z, Schlebach JP, Park C, Bowie JU. 2012. Thermodynamic stability of bacteriorhodopsin mutants measured relative to the bacterioopsin unfolded state. Biochim. Biophys. Acta 1818:1049-544
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 1049-1544
    • Cao, Z.1    Schlebach, J.P.2    Park, C.3    Bowie, J.U.4
  • 11
    • 0001041988 scopus 로고    scopus 로고
    • Probing the folding and unfolding of wild-type and mutant forms of bacteriorhodopsin in micellar solutions: Evaluation of reversible unfolding conditions
    • Chen GQ, Gouaux E. 1999. Probing the folding and unfolding of wild-type and mutant forms of bacteriorhodopsin in micellar solutions: evaluation of reversible unfolding conditions. Biochemistry 38:15380-877
    • (1999) Biochemistry , vol.38 , pp. 15380-15877
    • Chen, G.Q.1    Gouaux, E.2
  • 12
    • 0016352763 scopus 로고
    • Hydrophobic bonding and accessible surface area in proteins
    • Chothia C. 1974. Hydrophobic bonding and accessible surface area in proteins. Nature 248:338-399
    • (1974) Nature , vol.248 , pp. 338-399
    • Chothia, C.1
  • 14
    • 37649004552 scopus 로고    scopus 로고
    • Combined kinetic and thermodynamic analysis of alpha-helical membrane protein unfolding
    • Curnow P, Booth PJ. 2007. Combined kinetic and thermodynamic analysis of alpha-helical membrane protein unfolding. Proc. Natl. Acad. Sci. USA 104:18970-755
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 18970-18765
    • Curnow, P.1    Booth, P.J.2
  • 16
    • 0033587549 scopus 로고    scopus 로고
    • Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer
    • Curran AR, Templer RH, Booth PJ. 1999. Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer. Biochemistry 38:9328-366
    • (1999) Biochemistry , vol.38 , pp. 9328-9366
    • Curran, A.R.1    Templer, R.H.2    Booth, P.J.3
  • 17
    • 80052310851 scopus 로고    scopus 로고
    • The soluble, periplasmic domain of OmpA folds as an independent unit and displays chaperone activity by reducing the self-association propensity of the unfolded OmpA transmembrane β-barrel
    • Danoff EJ, Fleming KG. 2011. The soluble, periplasmic domain of OmpA folds as an independent unit and displays chaperone activity by reducing the self-association propensity of the unfolded OmpA transmembrane β-barrel. Biophys. Chem. 159:194-2044
    • (2011) Biophys. Chem. , vol.159 , pp. 194-204
    • Danoff, E.J.1    Fleming, K.G.2
  • 18
    • 34247633528 scopus 로고    scopus 로고
    • On the thermodynamic stability of a charged arginine side chain in a transmembrane helix
    • Dorairaj S, Allen TW. 2007. On the thermodynamic stability of a charged arginine side chain in a transmembrane helix. Proc. Natl. Acad. Sci. USA 104:4943-488
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 4943-4498
    • Dorairaj, S.1    Allen, T.W.2
  • 19
    • 6344236852 scopus 로고    scopus 로고
    • Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer
    • Doura AK, Fleming KG. 2004. Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer. J. Mol. Biol. 343:1487-977
    • (2004) J. Mol. Biol. , vol.343 , pp. 1487-1977
    • Doura, A.K.1    Fleming, K.G.2
  • 20
    • 3843102625 scopus 로고    scopus 로고
    • Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer
    • Doura AK, Kobus FJ, Dubrovsky L, Hibbard E, Fleming KG. 2004. Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer. J. Mol. Biol. 341:991-988
    • (2004) J. Mol. Biol. , vol.341 , pp. 991-988
    • Doura, A.K.1    Kobus, F.J.2    Dubrovsky, L.3    Hibbard, E.4    Fleming, K.G.5
  • 21
    • 33846390316 scopus 로고    scopus 로고
    • Dimerization of the erythropoietin receptor transmembrane domain in micelles
    • Ebie AZ, Fleming KG. 2007. Dimerization of the erythropoietin receptor transmembrane domain in micelles. J. Mol. Biol. 366:517-244
    • (2007) J. Mol. Biol. , vol.366 , pp. 517-244
    • Ebie, A.Z.1    Fleming, K.G.2
  • 24
    • 0032732426 scopus 로고    scopus 로고
    • Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain
    • Fisher LE, Engelman D, Sturgis J. 1999. Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain. J. Mol. Biol. 293:639-511
    • (1999) J. Mol. Biol. , vol.293 , pp. 639-511
    • Fisher, L.E.1    Engelman, D.2    Sturgis, J.3
  • 25
    • 0036408542 scopus 로고    scopus 로고
    • Standardizing the free energy change of transmembrane helix-helix interactions
    • Fleming KG. 2002. Standardizing the free energy change of transmembrane helix-helix interactions. J. Mol. Biol. 323:563-711
    • (2002) J. Mol. Biol. , vol.323 , pp. 563-711
    • Fleming, K.G.1
  • 26
    • 0030777759 scopus 로고    scopus 로고
    • The effect of point mutations on the free energy of transmembrane β-helix dimerization
    • Fleming KG, Ackerman AL, Engelman DM. 1997. The effect of point mutations on the free energy of transmembrane β-helix dimerization. J. Mol. Biol. 272:266-755
    • (1997) J. Mol. Biol. , vol.272 , pp. 266-755
    • Fleming, K.G.1    Ackerman, A.L.2    Engelman, D.M.3
  • 27
    • 0035807810 scopus 로고    scopus 로고
    • Specificity in transmembrane helix-helix interactions defines a hierarchy of stability for sequence variants
    • Fleming KG, Engelman DM. 2001. Specificity in transmembrane helix-helix interactions defines a hierarchy of stability for sequence variants. Proc. Natl. Acad. Sci. USA 98:14340-444
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 14340-14444
    • Fleming, K.G.1    Engelman, D.M.2
  • 28
    • 80054729137 scopus 로고    scopus 로고
    • Outer membrane phospholipase A in phospholipid bilayers: A model system for concerted computational and experimental investigations of amino acid side chain partitioning into lipid bilayers
    • Fleming PJ, Freites JA, Moon CP, Tobias DJ, Fleming KG. 2012. Outer membrane phospholipase A in phospholipid bilayers: a model system for concerted computational and experimental investigations of amino acid side chain partitioning into lipid bilayers. Biochim. Biophys. Acta 1818:126-344
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 126-344
    • Fleming, P.J.1    Freites, J.A.2    Moon, C.P.3    Tobias, D.J.4    Fleming, K.G.5
  • 29
    • 0035969998 scopus 로고    scopus 로고
    • Polar side chains drive the association of model transmembrane peptides
    • Gratkowski H, Lear JD, DeGradoWF. 2001. Polar side chains drive the association of model transmembrane peptides. Proc. Natl. Acad. Sci. USA 98:880-855
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 880-855
    • Gratkowski, H.1    Lear, J.D.2    Degrado, W.F.3
  • 30
    • 84857333669 scopus 로고    scopus 로고
    • Determination of membrane-insertion free energies by molecular dynamics simulations
    • Gumbart J, Roux B. 2012. Determination of membrane-insertion free energies by molecular dynamics simulations. Biophys. J. 102:795-8011
    • (2012) Biophys. J. , vol.102 , pp. 795-8011
    • Gumbart, J.1    Roux, B.2
  • 31
    • 84873675862 scopus 로고    scopus 로고
    • Reconciling the roles of kinetic and thermodynamic factors in membrane-protein insertion
    • Gumbart JC, Teo I, Roux B, Schulten K. 2013. Reconciling the roles of kinetic and thermodynamic factors in membrane-protein insertion. J. Am. Chem. Soc. 135:2291-977
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 2291-2977
    • Gumbart, J.C.1    Teo, I.2    Roux, B.3    Schulten, K.4
  • 32
    • 0029112313 scopus 로고
    • Forces and factors that contribute to the structural stability of membrane proteins
    • Haltia T, Freire E. 1995. Forces and factors that contribute to the structural stability of membrane proteins. Biochim. Biophys. Acta 1241:295-3222
    • (1995) Biochim. Biophys. Acta , vol.1241 , pp. 295-3222
    • Haltia, T.1    Freire, E.2
  • 33
    • 13444262028 scopus 로고    scopus 로고
    • Recognition of transmembrane helices by the endoplasmic reticulum translocon
    • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, et al. 2005. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377-811
    • (2005) Nature , vol.433 , pp. 377-811
    • Hessa, T.1    Kim, H.2    Bihlmaier, K.3    Lundin, C.4    Boekel, J.5
  • 34
    • 37249037182 scopus 로고    scopus 로고
    • Molecular code for transmembranehelix recognition by the Sec61 translocon
    • Hessa T, Meindl-Beinker NM, Bernsel A, KimH, Sato Y, et al. 2007. Molecular code for transmembranehelix recognition by the Sec61 translocon. Nature 450:1026-300
    • (2007) Nature , vol.450 , pp. 1026-1300
    • Hessa, T.1    Meindl-Beinker, N.M.2    Bernsel, A.3    Kimh Sato, Y.4
  • 35
    • 78650553544 scopus 로고    scopus 로고
    • Method to measure strong protein-protein interactions in lipid bilayers using a steric trap
    • Hong H, Blois TM, Cao Z, Bowie JU. 2010. Method to measure strong protein-protein interactions in lipid bilayers using a steric trap. Proc. Natl. Acad. Sci. USA 107:19802-77
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 19802-19877
    • Hong, H.1    Blois, T.M.2    Cao, Z.3    Bowie, J.U.4
  • 36
    • 79960590320 scopus 로고    scopus 로고
    • Dramatic destabilization of transmembrane helix interactions by features of natural membrane environments
    • Hong H, Bowie JU. 2011. Dramatic destabilization of transmembrane helix interactions by features of natural membrane environments. J. Am. Chem. Soc. 133:11389-988
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 11389-11988
    • Hong, H.1    Bowie, J.U.2
  • 37
    • 34447135007 scopus 로고    scopus 로고
    • Role of aromatic side chains in the folding and thermodynamic stability of integral membrane proteins
    • Hong H, Park S, Jimnez RH, Rinehart D, Tamm LK. 2007. Role of aromatic side chains in the folding and thermodynamic stability of integral membrane proteins. J. Am. Chem. Soc. 129:8320-277
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 8320-8287
    • Hong, H.1    Park, S.2    Jimnez, R.H.3    Rinehart, D.4    Tamm, L.K.5
  • 38
    • 84879528225 scopus 로고    scopus 로고
    • Membrane depth-dependent energetic contribution of the tryptophan side chain to the stability of integral membrane proteins
    • Hong H, Rinehart D, Tamm LK. 2013. Membrane depth-dependent energetic contribution of the tryptophan side chain to the stability of integral membrane proteins. Biochemistry 52:4413-211
    • (2013) Biochemistry , vol.52 , pp. 4413-4221
    • Hong, H.1    Rinehart, D.2    Tamm, L.K.3
  • 39
    • 33750255413 scopus 로고    scopus 로고
    • Electrostatic couplings in OmpA ion-channel gating suggest a mechanism for pore opening
    • Hong H, Szabo G, Tamm LK. 2006. Electrostatic couplings in OmpA ion-channel gating suggest a mechanism for pore opening. Nat. Chem. Biol. 2:627-355
    • (2006) Nat. Chem. Biol. , vol.2 , pp. 627-355
    • Hong, H.1    Szabo, G.2    Tamm, L.K.3
  • 40
    • 1642447757 scopus 로고    scopus 로고
    • Elastic coupling of integral membrane protein stability to lipid bilayer forces
    • Hong H, Tamm LK. 2004. Elastic coupling of integral membrane protein stability to lipid bilayer forces. Proc. Natl. Acad. Sci. USA 101:4065-700
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 4065-4700
    • Hong, H.1    Tamm, L.K.2
  • 41
    • 0037172965 scopus 로고    scopus 로고
    • Sequence determinants of the energetics of folding of a transmembrane four-helix-bundle protein
    • Howard KP, Lear JD, DeGrado WF. 2002. Sequence determinants of the energetics of folding of a transmembrane four-helix-bundle protein. Proc. Natl. Acad. Sci. USA 99:8568-722
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 8568-8722
    • Howard, K.P.1    Lear, J.D.2    Degrado, W.F.3
  • 42
    • 0019887931 scopus 로고
    • Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments
    • Huang K-S, Bayley H, Liao M-J, London E, Khorana HG. 1981. Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J. Biol. Chem. 256:3802-99
    • (1981) J. Biol. Chem. , vol.256 , pp. 3802-3899
    • Huang, K.-S.1    Bayley, H.2    Liao, M.-J.3    London, E.4    Khorana, H.G.5
  • 45
    • 46249089993 scopus 로고    scopus 로고
    • Modest stabilization by most hydrogenbonded side-chain interactions in membrane proteins
    • Joh NH, Min A, Faham S, Whitelegge JP, Yang D, et al. 2008. Modest stabilization by most hydrogenbonded side-chain interactions in membrane proteins. Nature 453:1266-700
    • (2008) Nature , vol.453 , pp. 1266-1700
    • Joh, N.H.1    Min, A.2    Faham, S.3    Whitelegge, J.P.4    Yang, D.5
  • 46
    • 68249144241 scopus 로고    scopus 로고
    • Similar energetic contributions of packing in the core of membrane and water-soluble proteins
    • Joh NH, Oberai A, Yang D, Whitelegge JP, Bowie JU. 2009. Similar energetic contributions of packing in the core of membrane and water-soluble proteins. J. Am. Chem. Soc. 131:10846-477
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 10846-10487
    • Joh, N.H.1    Oberai, A.2    Yang, D.3    Whitelegge, J.P.4    Bowie, J.U.5
  • 47
    • 0033281074 scopus 로고    scopus 로고
    • The translocon: A dynamic gateway at the ER membrane
    • Johnson AE, van Waes MA. 1999. The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15:799-8422
    • (1999) Annu. Rev. Cell Dev. Biol. , vol.15 , pp. 799-8422
    • Johnson, A.E.1    Van Waes, M.A.2
  • 48
    • 0026642866 scopus 로고
    • Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment
    • Kahn TW, Engelman DM. 1992. Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment. Biochemistry 31:6144-511
    • (1992) Biochemistry , vol.31 , pp. 6144-6511
    • Kahn, T.W.1    Engelman, D.M.2
  • 49
    • 0035957510 scopus 로고    scopus 로고
    • Structure and function in bacteriorhodopsin: The role of the interhelical loops in the folding and stability of bacteriorhodopsin
    • Kim JM, Booth PJ, Allen SJ, Khorana HG. 2001. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. J. Mol. Biol. 308:409-222
    • (2001) J. Mol. Biol. , vol.308 , pp. 409-222
    • Kim, J.M.1    Booth, P.J.2    Allen, S.J.3    Khorana, H.G.4
  • 50
    • 13444287923 scopus 로고    scopus 로고
    • The GxxxG-containing transmembrane domain of the CCK4 oncogene does not encode preferential self-interactions
    • Kobus FJ, Fleming KG. 2005. The GxxxG-containing transmembrane domain of the CCK4 oncogene does not encode preferential self-interactions. Biochemistry 44:1464-700
    • (2005) Biochemistry , vol.44 , pp. 1464-1700
    • Kobus, F.J.1    Fleming, K.G.2
  • 51
    • 0033554426 scopus 로고    scopus 로고
    • Total chemical synthesis of the integral membrane protein influenza A virusM2: Role of itsC-terminal domain in tetramer assembly
    • Kochendoerfer GG, Salom D, Lear JD, Wilk-Orescan R, Kent SB, DeGrado WF. 1999. Total chemical synthesis of the integral membrane protein influenza A virusM2: role of itsC-terminal domain in tetramer assembly. Biochemistry 38:11905-133
    • (1999) Biochemistry , vol.38 , pp. 11905-11143
    • Kochendoerfer, G.G.1    Salom, D.2    Lear, J.D.3    Wilk-Orescan, R.4    Kent, S.B.5    Degrado, W.F.6
  • 52
    • 0031010621 scopus 로고    scopus 로고
    • A method for assessing the stability of a membrane protein
    • Lau FW, Bowie JU. 1997. A method for assessing the stability of a membrane protein. Biochemistry 36:5884-922
    • (1997) Biochemistry , vol.36 , pp. 5884-5922
    • Lau, F.W.1    Bowie, J.U.2
  • 53
    • 84878145235 scopus 로고    scopus 로고
    • Crystal structure of the integral membrane diacylglycerol kinase
    • Li D, Lyons JA, Pye VE, Vogeley L, Arag?ao D, et al. 2013. Crystal structure of the integral membrane diacylglycerol kinase. Nature 497:521-244
    • (2013) Nature , vol.497 , pp. 521-244
    • Li, D.1    Lyons, J.A.2    Pye, V.E.3    Vogeley, L.4    Aragao, D.5
  • 54
    • 31344468061 scopus 로고    scopus 로고
    • FGFR3dimer stabilization due to a single amino acid pathogenicmutation
    • Li E, YouM, HristovaK. 2006.FGFR3dimer stabilization due to a single amino acid pathogenicmutation. J. Mol. Biol. 356:600-122
    • (2006) J. Mol. Biol. , vol.356 , pp. 600-122
    • Li, E.1    You, M.2    Hristova, K.3
  • 55
    • 2942700100 scopus 로고    scopus 로고
    • Dimerization of the transmembrane domain of integrin αiIb subunit in cell membranes
    • Li R, Gorelik R, Nanda V, Law PB, Lear JD, et al. 2004. Dimerization of the transmembrane domain of integrin αIIb subunit in cell membranes. J. Biol. Chem. 279:26666-733
    • (2004) J. Biol. Chem. , vol.279 , pp. 26666-26733
    • Li, R.1    Gorelik, R.2    Nanda, V.3    Law, P.B.4    Lear, J.D.5
  • 56
    • 33744490360 scopus 로고    scopus 로고
    • Positioning of proteins in membranes: A computational approach
    • DOI 10.1110/ps.062126106
    • Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. 2006. Positioning of proteins in membranes: a computational approach. Protein Sci. 15:1318-333 (Pubitemid 43800004)
    • (2006) Protein Science , vol.15 , Issue.6 , pp. 1318-1333
    • Lomize, A.L.1    Pogozheva, I.D.2    Lomize, M.A.3    Mosberg, H.I.4
  • 58
    • 0020490831 scopus 로고
    • Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures
    • London E, Khorana HG. 1982. Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures. J. Biol. Chem. 257:7003-111
    • (1982) J. Biol. Chem. , vol.257 , pp. 7003-7111
    • London, E.1    Khorana, H.G.2
  • 59
    • 0035957526 scopus 로고    scopus 로고
    • Proline residues in transmembrane helices affect the folding of bacteriorhodopsin
    • Lu H, Marti T, Booth PJ. 2001. Proline residues in transmembrane helices affect the folding of bacteriorhodopsin. J. Mol. Biol. 308:437-466
    • (2001) J. Mol. Biol. , vol.308 , pp. 437-466
    • Lu, H.1    Marti, T.2    Booth, P.J.3
  • 60
    • 0032582541 scopus 로고    scopus 로고
    • Secondary structure of bacteriorhodopsin fragments: External sequence constraints specify the conformation of transmembrane helices
    • Lüneberg J, Widmann M, Dathe M, Marti T. 1998. Secondary structure of bacteriorhodopsin fragments: External sequence constraints specify the conformation of transmembrane helices. J. Biol. Chem. 273:28822-300
    • (1998) J. Biol. Chem. , vol.273 , pp. 28822-28310
    • Lüneberg, J.1    Widmann, M.2    Dathe, M.3    Marti, T.4
  • 61
    • 43649094583 scopus 로고    scopus 로고
    • Distribution of amino acids in a lipid bilayer from computer simulations
    • MacCallum JL, Bennett WF, Tieleman DP. 2008. Distribution of amino acids in a lipid bilayer from computer simulations. Biophys. J. 94:3393-4044
    • (2008) Biophys. J. , vol.94 , pp. 3393-4044
    • Maccallum, J.L.1    Bennett, W.F.2    Tieleman, D.P.3
  • 62
    • 0035826625 scopus 로고    scopus 로고
    • NMR structure of human apolipoprotein C-II in the presence of sodium dodecyl sulfate
    • MacRaild CA, Hatters DM, Howlett GJ, Gooley PR. 2001. NMR structure of human apolipoprotein C-II in the presence of sodium dodecyl sulfate. Biochemistry 40:5414-211
    • (2001) Biochemistry , vol.40 , pp. 5414-5221
    • Macraild, C.A.1    Hatters, D.M.2    Howlett, G.J.3    Gooley, P.R.4
  • 63
    • 34848892779 scopus 로고    scopus 로고
    • Purification and initiation of structural characterization of human peripheral myelin protein 22, an integral membrane protein linked to peripheral neuropathies
    • Mobley CK, Myers JK, Hadziselimovic A, Ellis CD, Sanders CR. 2007. Purification and initiation of structural characterization of human peripheral myelin protein 22, an integral membrane protein linked to peripheral neuropathies. Biochemistry 46:11185-955
    • (2007) Biochemistry , vol.46 , pp. 11185-11955
    • Mobley, C.K.1    Myers, J.K.2    Hadziselimovic, A.3    Ellis, C.D.4    Sanders, C.R.5
  • 64
    • 0034713846 scopus 로고    scopus 로고
    • Involvement of electrostatic interactions in the mechanism of peptide folding induced by sodium dodecyl sulfate binding
    • Montserret R, McLeish MJ, Bockmann A, Geourjon C, Penin F. 2000. Involvement of electrostatic interactions in the mechanism of peptide folding induced by sodium dodecyl sulfate binding. Biochemistry 39:8362-733
    • (2000) Biochemistry , vol.39 , pp. 8362-8733
    • Montserret, R.1    McLeish, M.J.2    Bockmann, A.3    Geourjon, C.4    Penin, F.5
  • 65
    • 79959928058 scopus 로고    scopus 로고
    • Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers
    • Moon CP, Fleming KG. 2011. Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. Proc. Natl. Acad. Sci. USA 108:10174-777
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 10174-10777
    • Moon, C.P.1    Fleming, K.G.2
  • 66
    • 80054719797 scopus 로고    scopus 로고
    • Overcoming hysteresis to attain reversible equilibrium folding for outer membrane phospholipase A in phospholipid bilayers
    • Moon CP, Kwon S, Fleming KG. 2011. Overcoming hysteresis to attain reversible equilibrium folding for outer membrane phospholipase A in phospholipid bilayers. J. Mol. Biol. 413:484-944
    • (2011) J. Mol. Biol. , vol.413 , pp. 484-944
    • Moon, C.P.1    Kwon, S.2    Fleming, K.G.3
  • 68
    • 53249125616 scopus 로고    scopus 로고
    • The peripheral neuropathy-linked Trembler and Trembler-J mutant forms of peripheral myelin protein 22 are folding-destabilized
    • Myers JK, Mobley CK, Sanders CR. 2008. The peripheral neuropathy-linked Trembler and Trembler-J mutant forms of peripheral myelin protein 22 are folding-destabilized. Biochemistry 47:10620-299
    • (2008) Biochemistry , vol.47 , pp. 10620-10299
    • Myers, J.K.1    Mobley, C.K.2    Sanders, C.R.3
  • 69
    • 0028820703 scopus 로고
    • Denaturantmvalues and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding
    • Myers JK, Pace CN, Scholtz JM. 1995. Denaturantmvalues and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4:2138-488
    • (1995) Protein Sci. , vol.4 , pp. 2138-2488
    • Myers, J.K.1    Pace, C.N.2    Scholtz, J.M.3
  • 70
    • 0022555885 scopus 로고
    • Determination and analysis of urea and guanidine hydrochloride denaturation curves
    • Pace CN. 1986. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131:266-800
    • (1986) Methods Enzymol. , vol.131 , pp. 266-800
    • Pace, C.N.1
  • 72
  • 74
    • 0025249842 scopus 로고
    • Membrane protein folding and oligomerization: The two-stage model
    • Popot JL, Engelman DM. 1990. Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29:4031-377
    • (1990) Biochemistry , vol.29 , pp. 4031-4377
    • Popot, J.L.1    Engelman, D.M.2
  • 75
    • 33845428343 scopus 로고    scopus 로고
    • An unfolding story of helical transmembrane proteins
    • Renthal R. 2006. An unfolding story of helical transmembrane proteins. Biochemistry 45:14559-666
    • (2006) Biochemistry , vol.45 , pp. 14559-14666
    • Renthal, R.1
  • 76
    • 0029974409 scopus 로고    scopus 로고
    • Effect of transmembrane helix packing on tryptophan and tyrosine environments in detergent-solubilized bacterio-opsin
    • Renthal R,Haas P. 1996. Effect of transmembrane helix packing on tryptophan and tyrosine environments in detergent-solubilized bacterio-opsin. J. Protein Chem. 15:281-899
    • (1996) J. Protein Chem. , vol.15 , pp. 281-899
    • Renthal, R.1    Haas, P.2
  • 77
    • 0029019322 scopus 로고
    • Conformation of two peptides corresponding to human apolipoprotein C-I residues 7-24 and 35-53 in the presence of sodium dodecyl sulfate by CD and NMR spectroscopy
    • Rozek A, Buchko GW, Cushley RJ. 1995. Conformation of two peptides corresponding to human apolipoprotein C-I residues 7-24 and 35-53 in the presence of sodium dodecyl sulfate by CD and NMR spectroscopy. Biochemistry 34:7401-88
    • (1995) Biochemistry , vol.34 , pp. 7401-7488
    • Rozek, A.1    Buchko, G.W.2    Cushley, R.J.3
  • 78
    • 80051517324 scopus 로고    scopus 로고
    • Structural basis for theTrembler-J phenotype of Charcot-Marie-Tooth disease
    • Sakakura M, Hadziselimovic A, Wang Z, ScheyKL, SandersCR. 2011. Structural basis for theTrembler-J phenotype of Charcot-Marie-Tooth disease. Structure 19:1160-699
    • (2011) Structure , vol.19 , pp. 1160-1699
    • Sakakura, M.1    Hadziselimovic, A.2    Wang, Z.3    Schey, K.L.4    Sanders, C.R.5
  • 79
    • 57049130459 scopus 로고    scopus 로고
    • Effects of tryptophan microenvironment, soluble domain, and vesicle size on the thermodynamics of membrane protein folding: Lessons from the transmembrane protein OmpA
    • Sanchez KM, Gable JE, Schlamadinger DE, Kim JE. 2008. Effects of tryptophan microenvironment, soluble domain, and vesicle size on the thermodynamics of membrane protein folding: lessons from the transmembrane protein OmpA. Biochemistry 47:12844-522
    • (2008) Biochemistry , vol.47 , pp. 12844-12532
    • Sanchez, K.M.1    Gable, J.E.2    Schlamadinger, D.E.3    Kim, J.E.4
  • 81
    • 0023697408 scopus 로고
    • Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl α-chymotrypsin using different denaturants
    • Santoro MM, Bolen DW. 1988. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl α-chymotrypsin using different denaturants. Biochemistry 27:8063-688
    • (1988) Biochemistry , vol.27 , pp. 8063-8688
    • Santoro, M.M.1    Bolen, D.W.2
  • 82
    • 0026754044 scopus 로고
    • A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range
    • Santoro MM, Bolen DW. 1992. A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range. Biochemistry 31:4901-77
    • (1992) Biochemistry , vol.31 , pp. 4901-4977
    • Santoro, M.M.1    Bolen, D.W.2
  • 83
    • 84455204151 scopus 로고    scopus 로고
    • Revisiting the folding kinetics of bacteriorhodopsin
    • Schlebach JP,Cao Z, Bowie JU, Park C. 2012. Revisiting the folding kinetics of bacteriorhodopsin. Protein Sci. 21:97-1066
    • (2012) Protein Sci. , vol.21 , pp. 97-1066
    • Schlebach, J.P.1    Cao, Z.2    Bowie, J.U.3    Park, C.4
  • 84
    • 14844355538 scopus 로고    scopus 로고
    • The transmembrane domains of the ErbB receptors do not dimerize strongly in micelles
    • Stanley AM, Fleming KG. 2005. The transmembrane domains of the ErbB receptors do not dimerize strongly in micelles. J. Mol. Biol. 347:759-722
    • (2005) J. Mol. Biol. , vol.347 , pp. 759-722
    • Stanley, A.M.1    Fleming, K.G.2
  • 85
    • 34250187443 scopus 로고    scopus 로고
    • The role of a hydrogen bonding network in the transmembrane β-barrel OMPLA
    • Stanley AM, Fleming KG. 2007. The role of a hydrogen bonding network in the transmembrane β-barrel OMPLA. J. Mol. Biol. 370:912-244
    • (2007) J. Mol. Biol. , vol.370 , pp. 912-244
    • Stanley, A.M.1    Fleming, K.G.2
  • 86
    • 36749026606 scopus 로고    scopus 로고
    • The process of folding proteins intomembranes: Progress and challenges
    • Stanley AM, FlemingKG. 2008. The process of folding proteins intomembranes: progress and challenges. Arch. Biochem. Biophys. 469:46-666
    • (2008) Arch. Biochem. Biophys. , vol.469 , pp. 46-666
    • Stanley, A.M.1    Fleming, K.G.2
  • 87
    • 0034686669 scopus 로고    scopus 로고
    • Structure of a biologically active fragment of human serum apolipoprotein C-II in the presence of sodium dodecyl sulfate and dodecylphosphocholine
    • Storjohann R, Rozek A, Sparrow JT, Cushley RJ. 2000. Structure of a biologically active fragment of human serum apolipoprotein C-II in the presence of sodium dodecyl sulfate and dodecylphosphocholine. Biochim. Biophys. Acta 1486:253-644
    • (2000) Biochim. Biophys. Acta , vol.1486 , pp. 253-644
    • Storjohann, R.1    Rozek, A.2    Sparrow, J.T.3    Cushley, R.J.4
  • 88
    • 0035795721 scopus 로고    scopus 로고
    • Amino acid distributions in integral membrane protein structures
    • Ulmschneider MB, SansomMS. 2001. Amino acid distributions in integral membrane protein structures. Biochim. Biophys. Acta 1512:1-144
    • (2001) Biochim. Biophys. Acta , vol.1512 , pp. 1-144
    • Ulmschneider, M.B.1    Sansom, M.S.2
  • 89
    • 67649908268 scopus 로고    scopus 로고
    • Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase
    • Van Horn WD, Kim H-J, Ellis CD,Hadziselimovic A, Sulistijo ES, et al. 2009. Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324:1726-299
    • (2009) Science , vol.324 , pp. 1726-1299
    • Van Horn, W.D.1    Kim, H.-J.2    Ellis, C.D.3    Hadziselimovic, A.4    Sulistijo, E.S.5
  • 90
    • 0029984176 scopus 로고    scopus 로고
    • Conformation of human serum apolipoprotein A-I(166-185) in the presence of sodium dodecyl sulfate or dodecylphosphocholine by 1H-NMR and CD. Evidence for specific peptide-SDS interactions
    • Wang G, Treleaven WD, Cushley RJ. 1996. Conformation of human serum apolipoprotein A-I(166-185) in the presence of sodium dodecyl sulfate or dodecylphosphocholine by 1H-NMR and CD. Evidence for specific peptide-SDS interactions. Biochim. Biophys. Acta 1301:174-844
    • (1996) Biochim. Biophys. Acta , vol.1301 , pp. 174-844
    • Wang, G.1    Treleaven, W.D.2    Cushley, R.J.3
  • 92
    • 48249095616 scopus 로고    scopus 로고
    • How translocons select transmembrane helices
    • White SH, von Heijne G. 2008. How translocons select transmembrane helices. Annu. Rev. Biophys. 37:23-422
    • (2008) Annu. Rev. Biophys. , vol.37 , pp. 23-422
    • White, S.H.1    Von Heijne, G.2
  • 93
    • 0032987478 scopus 로고    scopus 로고
    • Membrane protein folding and stability: Physical principles
    • White SH, Wimley WC. 1999. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28:319-655
    • (1999) Annu. Rev. Biophys. Biomol. Struct. , vol.28 , pp. 319-655
    • White, S.H.1    Wimley, W.C.2
  • 94
    • 0030005250 scopus 로고    scopus 로고
    • Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides
    • Wimley WC, Creamer TP, White SH. 1996. Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. Biochemistry 35:5109-244
    • (1996) Biochemistry , vol.35 , pp. 5109-5244
    • Wimley, W.C.1    Creamer, T.P.2    White, S.H.3
  • 95
    • 0029738872 scopus 로고    scopus 로고
    • Experimentally determined hydrophobicity scale for proteins atmembrane interfaces
    • WimleyWC,White SH. 1996. Experimentally determined hydrophobicity scale for proteins atmembrane interfaces. Nat. Struct. Biol. 3:842-488
    • (1996) Nat. Struct. Biol. , vol.3 , pp. 842-488
    • Wimley, W.C.1    White, S.H.2
  • 96
    • 0742288411 scopus 로고    scopus 로고
    • The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors
    • Yohannan S, Faham S, Yang D, Whitelegge JP, Bowie JU. 2004. The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 101:959-633
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 959-633
    • Yohannan, S.1    Faham, S.2    Yang, D.3    Whitelegge, J.P.4    Bowie, J.U.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.