메뉴 건너뛰기




Volumn 31, Issue 6, 2014, Pages 219-232

The diverse role of Pdr12 in resistance to weak organic acids

Author keywords

Cmk1; Pdr12; Plasma membrane transporters; Saccharomyces cerevisiae; Weak organic acid tolerance

Indexed keywords

ABC TRANSPORTER; ABC TRANSPORTER PDR12; ACETIC ACID; CALCIUM CALMODULIN DEPENDENT PROTEIN KINASE I; CARBOXYLIC ACID; FORMIC ACID; GLYCOLIC ACID; LACTIC ACID; LEVULINIC ACID; PROPIONIC ACID; SORBIC ACID; UNCLASSIFIED DRUG; PDR12 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84901942875     PISSN: 0749503X     EISSN: 10970061     Source Type: Journal    
DOI: 10.1002/yea.3011     Document Type: Article
Times cited : (38)

References (43)
  • 2
    • 0041767568 scopus 로고    scopus 로고
    • Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants
    • Bauer BE, Rossington D, Mollapour M, et al. 2003. Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur J Biochem 270: 3189-3195.
    • (2003) Eur J Biochem , vol.270 , pp. 3189-3195
    • Bauer, B.E.1    Rossington, D.2    Mollapour, M.3
  • 3
    • 0029991328 scopus 로고    scopus 로고
    • Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate
    • Boles E, Gohlmann HW, Zimmermann FK. 1996. Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2, 6-bisphosphate. Mol Microbiol 20: 65-76.
    • (1996) Mol Microbiol , vol.20 , pp. 65-76
    • Boles, E.1    Gohlmann, H.W.2    Zimmermann, F.K.3
  • 4
    • 0031773799 scopus 로고    scopus 로고
    • Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH?
    • Bracey D, Holyoak CD, Coote PJ. 1998. Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH? J Appl Microbiol 85: 1056-1066.
    • (1998) J Appl Microbiol , vol.85 , pp. 1056-1066
    • Bracey, D.1    Holyoak, C.D.2    Coote, P.J.3
  • 5
    • 0035675838 scopus 로고    scopus 로고
    • Genetic analysis of calmodulin and its targets in Saccharomyces cerevisiae
    • Cyert MS. 2001. Genetic analysis of calmodulin and its targets in Saccharomyces cerevisiae. Annu Rev Genet 35: 647-672.
    • (2001) Annu Rev Genet , vol.35 , pp. 647-672
    • Cyert, M.S.1
  • 6
    • 0025809077 scopus 로고
    • Passage of molecules through yeast cell walls: a brief essay-review
    • De Nobel JG, Barnett JA. 1991. Passage of molecules through yeast cell walls: a brief essay-review. Yeast 7: 313-323.
    • (1991) Yeast , vol.7 , pp. 313-323
    • De Nobel, J.G.1    Barnett, J.A.2
  • 7
    • 84901947108 scopus 로고    scopus 로고
    • Isobutanol production using yeasts with modified transporter expression. US Patent No. 20130302868 A1.
    • Dundon CA, Smith C, Nahreini P, et al. 2013. Isobutanol production using yeasts with modified transporter expression. US Patent No. 20130302868 A1.
    • (2013)
    • Dundon, C.A.1    Smith, C.2    Nahreini, P.3
  • 8
    • 25844432253 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
    • Fernandes AR, Mira NP, Vargas RC, et al. 2005. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337: 95-103.
    • (2005) Biochem Biophys Res Commun , vol.337 , pp. 95-103
    • Fernandes, A.R.1    Mira, N.P.2    Vargas, R.C.3
  • 9
    • 23644459809 scopus 로고    scopus 로고
    • Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death
    • Giannattasio S, Guaragnella N, Corte-Real M. et al. 2005. Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene 354: 93-98.
    • (2005) Gene , vol.354 , pp. 93-98
    • Giannattasio, S.1    Guaragnella, N.2    Corte-Real, M.3
  • 10
    • 0026562884 scopus 로고
    • Improved method for high efficiency transformation of intact yeast cells
    • Gietz D, St. Jean A, Woods RA, et al. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20: 1425.
    • (1992) Nucleic Acids Res , vol.20 , pp. 1425
    • Gietz, D.1    St. Jean, A.2    Woods, R.A.3
  • 11
    • 84055178136 scopus 로고    scopus 로고
    • A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress
    • Guillem H, Rafael A, Consuelo M. et al. 2012. A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress. Biochem J 441: 255-264.
    • (2012) Biochem J , vol.441 , pp. 255-264
    • Guillem, H.1    Rafael, A.2    Consuelo, M.3
  • 12
    • 0038290314 scopus 로고    scopus 로고
    • Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter
    • Hatzixanthis K, Mollapour M, Seymour I, et al. 2003. Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter. Yeast 20: 575-585.
    • (2003) Yeast , vol.20 , pp. 575-585
    • Hatzixanthis, K.1    Mollapour, M.2    Seymour, I.3
  • 13
    • 0032766243 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae weak acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism
    • Holyoak CD, Bracey D, Piper PW, et al. 1999. The Saccharomyces cerevisiae weak acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol 181: 4644-4652.
    • (1999) J Bacteriol , vol.181 , pp. 4644-4652
    • Holyoak, C.D.1    Bracey, D.2    Piper, P.W.3
  • 14
    • 0029808313 scopus 로고    scopus 로고
    • +-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak acid preservative sorbic acid
    • +-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak acid preservative sorbic acid. Appl Environ Microbiol 62: 3158-3164.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 3158-3164
    • Holyoak, C.D.1    Stratford, M.2    McMullin, Z.3
  • 15
    • 0033866297 scopus 로고    scopus 로고
    • 2+-calmodulin-dependent protein kinase in yeast results in constitutive weak organic acid resistance, associated with a post-transcriptional activation of the Pdr12 ATP-binding cassette transporter
    • 2+-calmodulin-dependent protein kinase in yeast results in constitutive weak organic acid resistance, associated with a post-transcriptional activation of the Pdr12 ATP-binding cassette transporter. Mol Microbiol 37: 595-605.
    • (2000) Mol Microbiol , vol.37 , pp. 595-605
    • Holyoak, C.D.1    Thompson, S.2    Ortiz, C.C.3
  • 16
    • 84872415347 scopus 로고    scopus 로고
    • Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications
    • Karim AS, Curran KA, Alper HS, 2013. Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. FEMS Yeast Res 13: 107-116.
    • (2013) FEMS Yeast Res , vol.13 , pp. 107-116
    • Karim, A.S.1    Curran, K.A.2    Alper, H.S.3
  • 17
    • 84884410620 scopus 로고    scopus 로고
    • Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis
    • Koivistoinen OM, Kuivanen J, Barth D, et al. 2013. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microb Cell Fact 12: 82.
    • (2013) Microb Cell Fact , vol.12 , pp. 82
    • Koivistoinen, O.M.1    Kuivanen, J.2    Barth, D.3
  • 18
    • 84901917832 scopus 로고    scopus 로고
    • Improved yeast strain. International Patent No. WO 1999051746 A1.
    • Kuchler K, Piper P, Van Rooijen Rutger J. 1999. Improved yeast strain. International Patent No. WO 1999051746 A1.
    • (1999)
    • Kuchler, K.1    Piper, P.2    Van Rooijen Rutger, J.3
  • 19
    • 0033030735 scopus 로고    scopus 로고
    • Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce
    • Larsson S, Reimann A, Nilvebrant N-O, et al. 1999. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77-79: 91-103.
    • (1999) Appl Biochem Biotechnol , vol.77-79 , pp. 91-103
    • Larsson, S.1    Reimann, A.2    Nilvebrant, N.-O.3
  • 20
    • 0023652677 scopus 로고
    • 2+/calmodulin-dependent protein kinase in Saccharomyces cerevisiae
    • 2+/calmodulin-dependent protein kinase in Saccharomyces cerevisiae. FEBS Lett 219: 249-253.
    • (1987) FEBS Lett , vol.219 , pp. 249-253
    • Londesborough, J.1    Nuutinen, M.2
  • 22
    • 0029968992 scopus 로고    scopus 로고
    • Identification and characterization of the CLK1 gene product, a novel CaM kinase-like protein kinase from the yeast Saccharomyces cerevisiae
    • Melcher ML, Thorner J. 1996. Identification and characterization of the CLK1 gene product, a novel CaM kinase-like protein kinase from the yeast Saccharomyces cerevisiae. J Biol Chem 271: 29958-29968.
    • (1996) J Biol Chem , vol.271 , pp. 29958-29968
    • Melcher, M.L.1    Thorner, J.2
  • 23
    • 59149103060 scopus 로고    scopus 로고
    • The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids
    • Mira NP, Lourenço AB, Fernandes AR, et al. 2009. The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Res 9: 202-216.
    • (2009) FEMS Yeast Res , vol.9 , pp. 202-216
    • Mira, N.P.1    Lourenço, A.B.2    Fernandes, A.R.3
  • 24
    • 77958162502 scopus 로고    scopus 로고
    • Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view
    • Mira NP, Teixeira MC, Sá-Correia I. 2010. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS J Integr Biol 14: 525-540.
    • (2010) OMICS J Integr Biol , vol.14 , pp. 525-540
    • Mira, N.P.1    Teixeira, M.C.2    Sá-Correia, I.3
  • 25
    • 0028586017 scopus 로고
    • Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression
    • Mumberg D, Muller R, Funk M. 1994. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22: 5767-5768.
    • (1994) Nucleic Acids Res , vol.22 , pp. 5767-5768
    • Mumberg, D.1    Muller, R.2    Funk, M.3
  • 26
    • 0025836296 scopus 로고
    • Two yeast genes encoding calmodulin-dependent protein kinases. Isolation, sequencing and bacterial expressions of CMK1 and CMK2
    • Ohya Y, Kawasaki H, Suzuki K, et al. 1991. Two yeast genes encoding calmodulin-dependent protein kinases. Isolation, sequencing and bacterial expressions of CMK1 and CMK2. J Biol Chem 266: 12784-12794.
    • (1991) J Biol Chem , vol.266 , pp. 12784-12794
    • Ohya, Y.1    Kawasaki, H.2    Suzuki, K.3
  • 27
    • 0025882163 scopus 로고
    • 2+/calmodulin-dependent protein kinase genes in a unicellular eukaryote
    • 2+/calmodulin-dependent protein kinase genes in a unicellular eukaryote. EMBO J 10: 1511-1522.
    • (1991) EMBO J , vol.10 , pp. 1511-1522
    • Pausch, M.H.1    Kaim, D.2    Kunisawa, R.3
  • 28
    • 0033458078 scopus 로고    scopus 로고
    • Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives
    • Peter WP. 1999. Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radical Biol Med 27: 1219-1227.
    • (1999) Free Radical Biol Med , vol.27 , pp. 1219-1227
    • Peter, W.P.1
  • 30
    • 0032479995 scopus 로고    scopus 로고
    • The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast
    • Piper P, Mahé Y, Thompson S, et al. 1998. The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17: 4257-4265.
    • (1998) EMBO J , vol.17 , pp. 4257-4265
    • Piper, P.1    Mahé, Y.2    Thompson, S.3
  • 31
    • 0034769551 scopus 로고    scopus 로고
    • Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives
    • Piper P. Calderon CO, Hatzixanthis K, et al. 2001. Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147: 2635-2642.
    • (2001) Microbiology , vol.147 , pp. 2635-2642
    • Piper, P.1    Calderon, C.O.2    Hatzixanthis, K.3
  • 33
    • 0034284318 scopus 로고    scopus 로고
    • The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism
    • Richard P, Toivari MH, Penttilä M. 2000. The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol Lett 190: 39-43.
    • (2000) FEMS Microbiol Lett , vol.190 , pp. 39-43
    • Richard, P.1    Toivari, M.H.2    Penttilä, M.3
  • 34
    • 67349260802 scopus 로고    scopus 로고
    • ABC transporter Pdr10 regulates the membrane microenvironment of Pdr12 in Saccharomyces cerevisiae
    • Rockwell NC, Wolfger H, Kuchler K, et al. 2009. ABC transporter Pdr10 regulates the membrane microenvironment of Pdr12 in Saccharomyces cerevisiae. J Membr Biol 229: 27-52.
    • (2009) J Membr Biol , vol.229 , pp. 27-52
    • Rockwell, N.C.1    Wolfger, H.2    Kuchler, K.3
  • 37
    • 33751006150 scopus 로고    scopus 로고
    • The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives
    • Simões T, Mira NP, Fernandes AR, et al. 2006. The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives. Appl Environ Microbiol 72: 7168-7175.
    • (2006) Appl Environ Microbiol , vol.72 , pp. 7168-7175
    • Simões, T.1    Mira, N.P.2    Fernandes, A.R.3
  • 38
    • 0037255676 scopus 로고    scopus 로고
    • Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene
    • Skory C. 2003. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. J Ind Microbiol Biotechnol 30: 22-27.
    • (2003) J Ind Microbiol Biotechnol , vol.30 , pp. 22-27
    • Skory, C.1
  • 39
    • 0031740733 scopus 로고    scopus 로고
    • Evidence that sorbic acid does not inhibit yeast as a classic weak acid preservative
    • Stratford M, Anslow PA. 1998. Evidence that sorbic acid does not inhibit yeast as a classic weak acid preservative. Lett Appl Microbiol 27: 203-206.
    • (1998) Lett Appl Microbiol , vol.27 , pp. 203-206
    • Stratford, M.1    Anslow, P.A.2
  • 40
    • 78149357431 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae engineered to produce d-xylonate
    • Toivari MH, Ruohonen L, Richard P, et al. 2010. Saccharomyces cerevisiae engineered to produce d-xylonate. Appl Microbiol Biotechnol 88: 751-760.
    • (2010) Appl Microbiol Biotechnol , vol.88 , pp. 751-760
    • Toivari, M.H.1    Ruohonen, L.2    Richard, P.3
  • 41
    • 84862235495 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for bioconversion of d-xylose to d-xylonate
    • Toivari M, Nygård Y, Kumpula E-P, et al. 2012. Metabolic engineering of Saccharomyces cerevisiae for bioconversion of d-xylose to d-xylonate. Metab Eng 14: 427-436.
    • (2012) Metab Eng , vol.14 , pp. 427-436
    • Toivari, M.1    Nygård, Y.2    Kumpula, E.-P.3
  • 42
    • 84884267990 scopus 로고    scopus 로고
    • Yeast adaptation to weak acids prevents futile energy expenditure
    • Ullah A, Chandrasekaran G, Brul S, et al. 2013. Yeast adaptation to weak acids prevents futile energy expenditure. Front Microbiol 4: 142.
    • (2013) Front Microbiol , vol.4 , pp. 142
    • Ullah, A.1    Chandrasekaran, G.2    Brul, S.3
  • 43
    • 84870830687 scopus 로고    scopus 로고
    • Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae
    • Ullah A, Orij R, Brul S, et al. 2012. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 78: 8377-8387.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8377-8387
    • Ullah, A.1    Orij, R.2    Brul, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.