-
2
-
-
84857116578
-
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
-
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012;24:981-90.
-
(2012)
Cell Signal
, vol.24
, pp. 981-990
-
-
Ray, P.D.1
Huang, B.W.2
Tsuji, Y.3
-
3
-
-
84868003314
-
Current status of nanotechnology consumer products and nano-safety issues
-
Chuankrerkkul N, Sangsuk S. Current status of nanotechnology consumer products and nano-safety issues. J Met Mat Min 2008;18:75-9.
-
(2008)
J Met Mat Min
, vol.18
, pp. 75-79
-
-
Chuankrerkkul, N.1
Sangsuk, S.2
-
4
-
-
79958271494
-
Engineered nanoparticles in consumer products: Understanding a new ingredient
-
Kessler R. Engineered nanoparticles in consumer products: understanding a new ingredient. Environ Health Perspect 2011;119:A120-5.
-
(2011)
Environ Health Perspect
-
-
Kessler, R.1
-
5
-
-
31944451232
-
Toxic potential of materials at the nanolevel
-
Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel. Science 2006;311:622-7.
-
(2006)
Science
, vol.311
, pp. 622-627
-
-
Nel, A.1
Xia, T.2
Mädler, L.3
-
6
-
-
55849097685
-
Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia
-
Hadjipanayis CG, Bonder MJ, Balakrishnan S, et al. Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 2008;4:1925-9.
-
(2008)
Small
, vol.4
, pp. 1925-1929
-
-
Hadjipanayis, C.G.1
Bonder, M.J.2
Balakrishnan, S.3
-
8
-
-
0041375359
-
Nanoscale iron particles for environmental remediation: An overview
-
Zhang W. Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 2003;5:323-32.
-
(2003)
J Nanopart Res
, vol.5
, pp. 323-332
-
-
Zhang, W.1
-
9
-
-
20044363441
-
Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics
-
Nurmi JT, Tratnyek PG, Sarathy V, et al. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 2005;39:1221-30.
-
(2005)
Environ Sci Technol
, vol.39
, pp. 1221-1230
-
-
Nurmi, J.T.1
Tratnyek, P.G.2
Sarathy, V.3
-
10
-
-
0000233790
-
Synthesis, characterization, and magnetic studies of nonagglomerated zerovalent iron particles. Unexpected size dependence of the structure
-
De Caro D, Ely TO, Mari A, et al. Synthesis, characterization, and magnetic studies of nonagglomerated zerovalent iron particles. Unexpected size dependence of the structure. Chem Mater 1996;8:1987-91.
-
(1996)
Chem Mater
, vol.8
, pp. 1987-1991
-
-
De Caro, D.1
Ely, T.O.2
Mari, A.3
-
11
-
-
79954989626
-
Effects of nano-iron oxide particles on agronomic traits of soybean
-
Roghayyeh S, Mohammad S, Shishevan MT, et al. Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2010;2:112-3.
-
(2010)
Not Sci Biol
, vol.2
, pp. 112-113
-
-
Roghayyeh, S.1
Mohammad, S.2
Shishevan, M.T.3
-
12
-
-
84873194029
-
Naturally occurring iron oxide nanoparticles: Morphology, surface chemistry and environmental stability
-
Guo H, Barnard AS. Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. J Mater Chem A 2013;1:27-42.
-
(2013)
J Mater Chem A
, vol.1
, pp. 27-42
-
-
Guo, H.1
Barnard, A.S.2
-
14
-
-
0023759565
-
The potential diagram for oxygen at pH 7
-
Wood PM. The potential diagram for oxygen at pH 7. Biochem J 1988;253:287-9.
-
(1988)
Biochem J
, vol.253
, pp. 287-289
-
-
Wood, P.M.1
-
15
-
-
0002425535
-
The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2+)
-
Koppenol WH, Liebman JF. The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2+). J Phys Chem 1984;88:99-101.
-
(1984)
J Phys Chem
, vol.88
, pp. 99-101
-
-
Koppenol, W.H.1
Liebman, J.F.2
-
16
-
-
84859317731
-
PH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction
-
Bataineh H, Pestovsky O, Bakac A. pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction. Chem Sci 2012;3:1594-9.
-
(2012)
Chem Sci
, vol.3
, pp. 1594-1599
-
-
Bataineh, H.1
Pestovsky, O.2
Bakac, A.3
-
17
-
-
51949096737
-
Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen
-
Keenan CR, Sedlak DL. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ Sci Technol 2008;42:6936-41.
-
(2008)
Environ Sci Technol
, vol.42
, pp. 6936-6941
-
-
Keenan, C.R.1
Sedlak, D.L.2
-
18
-
-
0034036925
-
Role of carbonate speciation on the oxidation of Fe(II) by H2O2
-
King DW, Farlow R. Role of carbonate speciation on the oxidation of Fe(II) by H2O2. Mar Chem 2000;70:201-9.
-
(2000)
Mar Chem
, vol.70
, pp. 201-209
-
-
King, D.W.1
Farlow, R.2
-
19
-
-
0031657723
-
Autoxidation of ferrous ion complexes: A method for the generation of hydroxyl radicals
-
Kachur AV, Tuttle SW, Biaglow JE. Autoxidation of ferrous ion complexes: a method for the generation of hydroxyl radicals. Radiat Res 1998;150:475-82.
-
(1998)
Radiat Res
, vol.150
, pp. 475-482
-
-
Kachur, A.V.1
Tuttle, S.W.2
Biaglow, J.E.3
-
20
-
-
0025024953
-
Resonance Raman pursuit of the change from iron(II)-oxygen (FeII-O2) to iron(III)-hydrohxyl (FeIII-OH) via iron(IV):oxygen (FeIV: O) in the autoxidation of ferrous iron-porphyrin
-
Mizutani Y, Hashimoto S, Tatsuno Y, et al. Resonance Raman pursuit of the change from iron(II)-oxygen (FeII-O2) to iron(III)-hydrohxyl (FeIII-OH) via iron(IV):oxygen (FeIV: O) in the autoxidation of ferrous iron-porphyrin. J Am Chem Soc 1990;112:6809-14.
-
(1990)
J Am Chem Soc
, vol.112
, pp. 6809-6814
-
-
Mizutani, Y.1
Hashimoto, S.2
Tatsuno, Y.3
-
21
-
-
77954472361
-
Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts
-
Rey A, Bahamonde A, Casas JA, et al. Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts. Water Sci Technol 2010;61:2769-78.
-
(2010)
Water Sci Technol
, vol.61
, pp. 2769-2778
-
-
Rey, A.1
Bahamonde, A.2
Casas, J.A.3
-
22
-
-
0000546986
-
Production of hydroxyl radicals by iron solid compounds
-
Zalma R, Bonneau L, Guignard J, et al. Production of hydroxyl radicals by iron solid compounds. Toxicol Environ Chem 1987;13:171-87.
-
(1987)
Toxicol Environ Chem
, vol.13
, pp. 171-187
-
-
Zalma, R.1
Bonneau, L.2
Guignard, J.3
-
23
-
-
0032524509
-
Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications
-
Lin SS, Gurol MD. Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ Sci Technol 1998;32:1417-23.
-
(1998)
Environ Sci Technol
, vol.32
, pp. 1417-1423
-
-
Lin, S.S.1
Gurol, M.D.2
-
24
-
-
0033214248
-
Hydrogen peroxide decomposition in model subsurface systems
-
Watts RJ, Foget MK, Kong S, et al. Hydrogen peroxide decomposition in model subsurface systems. J Hazard Mater 1999;69:229-43.
-
(1999)
J Hazard Mater
, vol.69
, pp. 229-243
-
-
Watts, R.J.1
Foget, M.K.2
Kong, S.3
-
25
-
-
72249112169
-
A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values
-
Pham AL, Lee C, Doyle FM, et al. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ Sci Technol 2009;43:8930-5.
-
(2009)
Environ Sci Technol
, vol.43
, pp. 8930-8935
-
-
Pham, A.L.1
Lee, C.2
Doyle, F.M.3
-
26
-
-
84874352015
-
Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: Demonstration in the degradation of 2-chlorobiphenyl
-
Fang GD, Zhou DM, Dionysiou DD. Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: demonstration in the degradation of 2-chlorobiphenyl. J Hazard Mater 2013;250-251:68-75.
-
(2013)
J Hazard Mater
, vol.250-251
, pp. 68-75
-
-
Fang, G.D.1
Zhou, D.M.2
Dionysiou, D.D.3
-
27
-
-
39649108197
-
Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen
-
Keenan CR, Sedlak DL. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ Sci Technol 2008;42:1262-7.
-
(2008)
Environ Sci Technol
, vol.42
, pp. 1262-1267
-
-
Keenan, C.R.1
Sedlak, D.L.2
-
28
-
-
67349142639
-
Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide
-
Xue X, Hanna K, Deng N. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. J Hazard Mater 2009;166:407-14.
-
(2009)
J Hazard Mater
, vol.166
, pp. 407-414
-
-
Xue, X.1
Hanna, K.2
Deng, N.3
-
29
-
-
75349102695
-
Redox behavior of magnetite: Implications for contaminant reduction
-
Gorski CA, Nurmi JT, Tratnyek PG, et al. Redox behavior of magnetite: implications for contaminant reduction. Environ Sci Technol 2010;44:55-60.
-
(2010)
Environ Sci Technol
, vol.44
, pp. 55-60
-
-
Gorski, C.A.1
Nurmi, J.T.2
Tratnyek, P.G.3
-
30
-
-
78650982804
-
Surfacemediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity
-
Voinov MA, Sosa Pagán JO, Morrison E, et al. Surfacemediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 2011;133:35-41.
-
(2011)
J Am Chem Soc
, vol.133
, pp. 35-41
-
-
Voinov, M.A.1
Sosa Pagán, J.O.2
Morrison, E.3
-
31
-
-
84864683208
-
Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity
-
Chen Z, Yin JJ, Zhou YT, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012;6:4001-12.
-
(2012)
ACS Nano
, vol.6
, pp. 4001-4012
-
-
Chen, Z.1
Yin, J.J.2
Zhou, Y.T.3
-
32
-
-
0036644133
-
Decolorization and azo dye degradation by anaerobic/aerobic sequential process
-
Sponza DT, Isik M. Decolorization and azo dye degradation by anaerobic/aerobic sequential process. Enzyme Microb Technol 2002;31:102-10.
-
(2002)
Enzyme Microb Technol
, vol.31
, pp. 102-110
-
-
Sponza, D.T.1
Isik, M.2
-
34
-
-
0037443292
-
Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems
-
Kwan WP, Voelker BM. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol 2003;37:1150-8.
-
(2003)
Environ Sci Technol
, vol.37
, pp. 1150-1158
-
-
Kwan, W.P.1
Voelker, B.M.2
-
35
-
-
77953090370
-
The effect of surface area and crystal structure on the catalytic efficiency of iron(III) oxide nanoparticles in hydrogen peroxide decomposition
-
Gregor C, Hermanek M, Jancik D, et al. The effect of surface area and crystal structure on the catalytic efficiency of iron(III) oxide nanoparticles in hydrogen peroxide decomposition. Eur J Inorg Chem 2010;2010:2343-51.
-
(2010)
Eur J Inorg Chem
, vol.2010
, pp. 2343-2351
-
-
Gregor, C.1
Hermanek, M.2
Jancik, D.3
-
36
-
-
0031193606
-
Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs
-
Wang CB, Zhang W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 1997;31:2154-6.
-
(1997)
Environ Sci Technol
, vol.31
, pp. 2154-2156
-
-
Wang, C.B.1
Zhang, W.2
-
37
-
-
27744541776
-
Reduction of crystalline iron(III) oxyhydroxides using hydroquinone: Influence of phase and particle size
-
Anschutz AJ, Penn RL. Reduction of crystalline iron(III) oxyhydroxides using hydroquinone: influence of phase and particle size. Geochem Trans 2005;6:60-6.
-
(2005)
Geochem Trans
, vol.6
, pp. 60-66
-
-
Anschutz, A.J.1
Penn, R.L.2
-
38
-
-
65249085691
-
Surface chemistry and dissolution of α-FeOOH nanorods and microrods: Environmental implications of size-dependent interactions with oxalate
-
Cwiertny DM, Hunter GJ, Pettibone JM, et al. Surface chemistry and dissolution of α-FeOOH nanorods and microrods: Environmental implications of size-dependent interactions with oxalate. J Phys Chem C 2009;113:2175-86.
-
(2009)
J Phys Chem C
, vol.113
, pp. 2175-2186
-
-
Cwiertny, D.M.1
Hunter, G.J.2
Pettibone, J.M.3
-
39
-
-
84862687276
-
Influence of size, morphology, surface structure, and aggregation state on reductive dissolution of hematite nanoparticles with ascorbic acid
-
Echigo T, Aruguete D, Murayama M, et al. Influence of size, morphology, surface structure, and aggregation state on reductive dissolution of hematite nanoparticles with ascorbic acid. Geochim Cosmochim Ac 2009;90:149-62.
-
(2009)
Geochim Cosmochim Ac
, vol.90
, pp. 149-162
-
-
Echigo, T.1
Aruguete, D.2
Murayama, M.3
-
41
-
-
0000649079
-
Particle size effect on the reaction goethite = hematite + water
-
Langmuir D. Particle size effect on the reaction goethite = hematite + water. Am J Sci 1971;271:147-56.
-
(1971)
Am J Sci
, vol.271
, pp. 147-156
-
-
Langmuir, D.1
-
42
-
-
34047129152
-
Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition
-
Chernyshova IV, Hochella MF, Madden AS. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys 2007;9:1736-50.
-
(2007)
Phys Chem Chem Phys
, vol.9
, pp. 1736-1750
-
-
Chernyshova, I.V.1
Hochella, M.F.2
Madden, A.S.3
-
43
-
-
33947424323
-
Oxygen K-edge emission and absorption spectroscopy of iron oxyhydroxide nanoparticles
-
Gilbert B, Kim CS, Dong CL, et al. Oxygen K-edge emission and absorption spectroscopy of iron oxyhydroxide nanoparticles. AIP Conf Proc 2007;882:721-5.
-
(2007)
AIP Conf Proc
, vol.882
, pp. 721-725
-
-
Gilbert, B.1
Kim, C.S.2
Dong, C.L.3
-
44
-
-
41149090312
-
Size-driven structural and thermodynamic complexity in iron oxides
-
Navrotsky A, Mazeina L, Majzlan J. Size-driven structural and thermodynamic complexity in iron oxides. Science 2008;319:1635-8.
-
(2008)
Science
, vol.319
, pp. 1635-1638
-
-
Navrotsky, A.1
Mazeina, L.2
Majzlan, J.3
-
45
-
-
79960909435
-
Thermodynamic modelling of nanomorphologies of hematite and goethite
-
Guo H, Barnard AS. Thermodynamic modelling of nanomorphologies of hematite and goethite. J Mater Chem 2011;21:11566-77.
-
(2011)
J Mater Chem
, vol.21
, pp. 11566-11577
-
-
Guo, H.1
Barnard, A.S.2
-
46
-
-
0025939910
-
Solubility and dissolution of iron oxides
-
Schwertmann U. Solubility and dissolution of iron oxides. Plant Soil 1991;130:1-25.
-
(1991)
Plant Soil
, vol.130
, pp. 1-25
-
-
Schwertmann, U.1
-
47
-
-
0034999439
-
Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite
-
Larsena O, Postma D. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochim Cosmochim Ac 2001;65:1367-79.
-
(2001)
Geochim Cosmochim Ac
, vol.65
, pp. 1367-1379
-
-
Larsena, O.1
Postma, D.2
-
48
-
-
0037392614
-
Fe(III) oxide reactivity toward biological versus chemical reduction
-
Roden EE. Fe(III) oxide reactivity toward biological versus chemical reduction. Environ Sci Technol 2003;37:1319-24.
-
(2003)
Environ Sci Technol
, vol.37
, pp. 1319-1324
-
-
Roden, E.E.1
-
49
-
-
76149146039
-
Nanosized iron oxide colloids strongly enhance microbial iron reduction
-
Bosch J, Heister K, Hofmann T, et al. Nanosized iron oxide colloids strongly enhance microbial iron reduction. Appl Environ Microbiol 2010;76:184-9.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 184-189
-
-
Bosch, J.1
Heister, K.2
Hofmann, T.3
-
50
-
-
84868569888
-
Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with ferrihydrite and lepidocrocite
-
Shi Z, Zachara JM, Shi L, et al. Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with ferrihydrite and lepidocrocite. Environ Sci Technol 2012;46:11644-52.
-
(2012)
Environ Sci Technol
, vol.46
, pp. 11644-11652
-
-
Shi, Z.1
Zachara, J.M.2
Shi, L.3
-
51
-
-
84872393944
-
Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: Catalytic activities mediated by surface chemical states
-
Wang B, Yin JJ, Zhou XY, et al. Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: catalytic activities mediated by surface chemical states. J Phys Chem C 2013;117:383-92.
-
(2013)
J Phys Chem C
, vol.117
, pp. 383-392
-
-
Wang, B.1
Yin, J.J.2
Zhou, X.Y.3
-
52
-
-
33646547639
-
Degradation of phenol with Fenton-like treatment by using heterogeneous catalyst (modified iron oxide) and hydrogen peroxide
-
Lee S, Oh J, Park Y. Degradation of phenol with Fenton-like treatment by using heterogeneous catalyst (modified iron oxide) and hydrogen peroxide. Bull Korean Chem Soc 2006;27:489-94.
-
(2006)
Bull Korean Chem Soc
, vol.27
, pp. 489-494
-
-
Lee, S.1
Oh, J.2
Park, Y.3
-
53
-
-
35948999613
-
Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: Competition between the surface area and crystallinity of nanoparticles
-
Hermanek M, Zboril R, Medrik I, et al. Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 2007;129:10929-36.
-
(2007)
J Am Chem Soc
, vol.129
, pp. 10929-10936
-
-
Hermanek, M.1
Zboril, R.2
Medrik, I.3
-
55
-
-
84884183310
-
Redox signaling is an early event in the pathogenesis of renovascular hypertension
-
Hartono SP, Knudsen BE, Zubair AS, et al. Redox signaling is an early event in the pathogenesis of renovascular hypertension. Int J Mol Sci 2013;14:18640-56.
-
(2013)
Int J Mol Sci
, vol.14
, pp. 18640-18656
-
-
Hartono, S.P.1
Knudsen, B.E.2
Zubair, A.S.3
-
56
-
-
0036341207
-
Signal transduction and endocytosis: Close encounters of many kinds
-
Sorkin A, Von Zastrow M. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 2002;3:600-14.
-
(2002)
Nat Rev Mol Cell Biol
, vol.3
, pp. 600-614
-
-
Sorkin, A.1
Von Zastrow, M.2
-
57
-
-
78649898766
-
Mitochondrial matrix pH controls oxidative phosphorylation and metabolismsecretion coupling in INS-1E clonal beta cells
-
Akhmedov D, Braun M, Mataki C, et al. Mitochondrial matrix pH controls oxidative phosphorylation and metabolismsecretion coupling in INS-1E clonal beta cells. FASEB J 2010;24:4613-26.
-
(2010)
FASEB J
, vol.24
, pp. 4613-4626
-
-
Akhmedov, D.1
Braun, M.2
Mataki, C.3
-
58
-
-
0036285988
-
A large-conductance anion channel of the Golgi complex
-
Thompson RJ, Nordeen MH, Howell KE, et al. A large-conductance anion channel of the Golgi complex. Biophys J 2002;83:278-89.
-
(2002)
Biophys J
, vol.83
, pp. 278-289
-
-
Thompson, R.J.1
Nordeen, M.H.2
Howell, K.E.3
-
59
-
-
84878399494
-
PH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide
-
Lee H, Lee HJ, Sedlak DL, Lee C. pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide. Chemosphere 2013;92:652-8.
-
(2013)
Chemosphere
, vol.92
, pp. 652-658
-
-
Lee, H.1
Lee, H.J.2
Sedlak, D.L.3
Lee, C.4
-
60
-
-
0028991162
-
Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material
-
Miller CM, Valentine RL. Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material. Water Res 1995;29:2353-9.
-
(1995)
Water Res
, vol.29
, pp. 2353-2359
-
-
Miller, C.M.1
Valentine, R.L.2
-
61
-
-
0031925437
-
Iron oxide surface catalyzed oxidation by quinoline by hydrogen peroxide
-
Valentine RL, Wang HCA. Iron oxide surface catalyzed oxidation by quinoline by hydrogen peroxide. J Environ Eng 1998;124:31-8.
-
(1998)
J Environ Eng
, vol.124
, pp. 31-38
-
-
Valentine, R.L.1
Hca, W.2
-
62
-
-
0037782275
-
Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: PH-dependent formation of oxidants in the Fenton reaction
-
Hug SJ, Leupin O. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ Sci Technol 2003;37:2734-42.
-
(2003)
Environ Sci Technol
, vol.37
, pp. 2734-2742
-
-
Hug, S.J.1
Leupin, O.2
-
63
-
-
79960332109
-
Influence of phosphate on the oxidation kinetics of nanomolar Fe(II) in aqueous solution at circumneutral pH
-
MaoY Pham ANP, Rose AL, et al. Influence of phosphate on the oxidation kinetics of nanomolar Fe(II) in aqueous solution at circumneutral pH. Geochim Cosmochim Ac 2011;75:4601-10.
-
(2011)
Geochim Cosmochim Ac
, vol.75
, pp. 4601-4610
-
-
Mao, Y.1
Pham, A.N.P.2
Rose, A.L.3
-
64
-
-
0028974245
-
Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction
-
Lipczynska-Kochany E, Sprah G, Harms S. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 1995;30:9-20.
-
(1995)
Chemosphere
, vol.30
, pp. 9-20
-
-
Lipczynska-Kochany, E.1
Sprah, G.2
Harms, S.3
-
65
-
-
49349085256
-
Redox compartmentalization in eukaryotic cells
-
Go YM, Jones DP. Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 2008;1780:1273-90.
-
(2008)
Biochim Biophys Acta
, vol.1780
, pp. 1273-1290
-
-
Go, Y.M.1
Jones, D.P.2
-
66
-
-
26244447885
-
A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: Implications for cellular magnetic resonance imaging
-
Arbab AS, Wilson LB, Ashari P, et al. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 2005;18:383-9.
-
(2005)
NMR Biomed
, vol.18
, pp. 383-389
-
-
Arbab, A.S.1
Wilson, L.B.2
Ashari, P.3
-
67
-
-
84861609579
-
Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response
-
Laskar A, Ghosh M, Khattak SI, et al. Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response. Nanomedicine (Lond) 2012;7:705-17.
-
(2012)
Nanomedicine (Lond)
, vol.7
, pp. 705-717
-
-
Laskar, A.1
Ghosh, M.2
Khattak, S.I.3
-
68
-
-
61349202912
-
Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling
-
Apopa PL, Qian Y, Shao R, et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol 2009;6:1.
-
(2009)
Part Fibre Toxicol
, vol.6
, pp. 1
-
-
Apopa, P.L.1
Qian, Y.2
Shao, R.3
-
69
-
-
33744994982
-
Effects of humic substances on the oxidation of pentachlorophenol by peroxosulfate catalyzed by iron(III)-phthalocyanine-tetrasulfonic acid
-
Fukushima M, Tatsumi K. Effects of humic substances on the oxidation of pentachlorophenol by peroxosulfate catalyzed by iron(III)-phthalocyanine- tetrasulfonic acid. Bioresour Technol 2006;97:1605-11.
-
(2006)
Bioresour Technol
, vol.97
, pp. 1605-1611
-
-
Fukushima, M.1
Tatsumi, K.2
-
70
-
-
27744442489
-
Effect of humic acids on the Fenton degradation of phenol
-
Vione D, Merlo F, Valter M, et al. Effect of humic acids on the Fenton degradation of phenol. Environ Chem Lett 2004;2:129-33.
-
(2004)
Environ Chem Lett
, vol.2
, pp. 129-133
-
-
Vione, D.1
Merlo, F.2
Valter, M.3
-
71
-
-
0032933765
-
Quinolinic acid, α-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid enhance the Fenton reaction in phosphate buffer
-
Iwahashi H, Kawamori H, Fukushima K. Quinolinic acid, α-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid enhance the Fenton reaction in phosphate buffer. Chem Biol Interact 1999;118:201-15.
-
(1999)
Chem Biol Interact
, vol.118
, pp. 201-215
-
-
Iwahashi, H.1
Kawamori, H.2
Fukushima, K.3
-
72
-
-
81455138106
-
Effect of some naturally occurring iron ion chelators on the formation of radicals in the reaction mixtures of rat liver microsomes with ADP, Fe3+ and NADPH
-
Minakata K, Fukushima K, Nakamura M, et al. Effect of some naturally occurring iron ion chelators on the formation of radicals in the reaction mixtures of rat liver microsomes with ADP, Fe3+ and NADPH. J Clin Biochem Nutr 2011;49:207-15.
-
(2011)
J Clin Biochem Nutr
, vol.49
, pp. 207-215
-
-
Minakata, K.1
Fukushima, K.2
Nakamura, M.3
-
73
-
-
0035664317
-
Surface complexation and dissolution of hematite by C-1-C-6 dicarboxylic acids at pH 5.0
-
Duckworth OW, Martin ST. Surface complexation and dissolution of hematite by C-1-C-6 dicarboxylic acids at pH 5.0. Geochim Cosmochim Acta 2001;65:4289-301.
-
(2001)
Geochim Cosmochim Acta
, vol.65
, pp. 4289-4301
-
-
Duckworth, O.W.1
Martin, S.T.2
-
74
-
-
0036570150
-
Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation
-
Royer RA, Burgos WD, Fisher AS, et al. Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation. Environ Sci Technol 2002;36:1939-46.
-
(2002)
Environ Sci Technol
, vol.36
, pp. 1939-1946
-
-
Royer, R.A.1
Burgos, W.D.2
Fisher, A.S.3
|