메뉴 건너뛰기




Volumn 22, Issue 1, 2014, Pages 86-94

Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides

Author keywords

Iron oxide; Metallic iron; Nanoparticle; Reactive oxygen species; Toxicity

Indexed keywords

BUFFER; IRON DERIVATIVE; IRON OXIDE; NANOMATERIAL; NANOPARTICLE; ORGANIC COMPOUND; REACTIVE OXYGEN METABOLITE; REDUCING AGENT; FERRIC ION; FERRIC OXIDE; IRON; METAL NANOPARTICLE;

EID: 84901588887     PISSN: 10219498     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jfda.2014.01.007     Document Type: Review
Times cited : (211)

References (74)
  • 2
    • 84857116578 scopus 로고    scopus 로고
    • Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
    • Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012;24:981-90.
    • (2012) Cell Signal , vol.24 , pp. 981-990
    • Ray, P.D.1    Huang, B.W.2    Tsuji, Y.3
  • 3
    • 84868003314 scopus 로고    scopus 로고
    • Current status of nanotechnology consumer products and nano-safety issues
    • Chuankrerkkul N, Sangsuk S. Current status of nanotechnology consumer products and nano-safety issues. J Met Mat Min 2008;18:75-9.
    • (2008) J Met Mat Min , vol.18 , pp. 75-79
    • Chuankrerkkul, N.1    Sangsuk, S.2
  • 4
    • 79958271494 scopus 로고    scopus 로고
    • Engineered nanoparticles in consumer products: Understanding a new ingredient
    • Kessler R. Engineered nanoparticles in consumer products: understanding a new ingredient. Environ Health Perspect 2011;119:A120-5.
    • (2011) Environ Health Perspect
    • Kessler, R.1
  • 5
    • 31944451232 scopus 로고    scopus 로고
    • Toxic potential of materials at the nanolevel
    • Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel. Science 2006;311:622-7.
    • (2006) Science , vol.311 , pp. 622-627
    • Nel, A.1    Xia, T.2    Mädler, L.3
  • 6
    • 55849097685 scopus 로고    scopus 로고
    • Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia
    • Hadjipanayis CG, Bonder MJ, Balakrishnan S, et al. Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 2008;4:1925-9.
    • (2008) Small , vol.4 , pp. 1925-1929
    • Hadjipanayis, C.G.1    Bonder, M.J.2    Balakrishnan, S.3
  • 7
    • 82555196568 scopus 로고    scopus 로고
    • Iron nanoparticles as a food additive for poultry
    • Nikonov IN, Folmanis YG, Folmanis GE, et al. Iron nanoparticles as a food additive for poultry. Dokl Biol Sci 2011;440:328-31.
    • (2011) Dokl Biol Sci , vol.440 , pp. 328-331
    • Nikonov, I.N.1    Folmanis, Y.G.2    Folmanis, G.E.3
  • 8
    • 0041375359 scopus 로고    scopus 로고
    • Nanoscale iron particles for environmental remediation: An overview
    • Zhang W. Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 2003;5:323-32.
    • (2003) J Nanopart Res , vol.5 , pp. 323-332
    • Zhang, W.1
  • 9
    • 20044363441 scopus 로고    scopus 로고
    • Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics
    • Nurmi JT, Tratnyek PG, Sarathy V, et al. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 2005;39:1221-30.
    • (2005) Environ Sci Technol , vol.39 , pp. 1221-1230
    • Nurmi, J.T.1    Tratnyek, P.G.2    Sarathy, V.3
  • 10
    • 0000233790 scopus 로고    scopus 로고
    • Synthesis, characterization, and magnetic studies of nonagglomerated zerovalent iron particles. Unexpected size dependence of the structure
    • De Caro D, Ely TO, Mari A, et al. Synthesis, characterization, and magnetic studies of nonagglomerated zerovalent iron particles. Unexpected size dependence of the structure. Chem Mater 1996;8:1987-91.
    • (1996) Chem Mater , vol.8 , pp. 1987-1991
    • De Caro, D.1    Ely, T.O.2    Mari, A.3
  • 11
    • 79954989626 scopus 로고    scopus 로고
    • Effects of nano-iron oxide particles on agronomic traits of soybean
    • Roghayyeh S, Mohammad S, Shishevan MT, et al. Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2010;2:112-3.
    • (2010) Not Sci Biol , vol.2 , pp. 112-113
    • Roghayyeh, S.1    Mohammad, S.2    Shishevan, M.T.3
  • 12
    • 84873194029 scopus 로고    scopus 로고
    • Naturally occurring iron oxide nanoparticles: Morphology, surface chemistry and environmental stability
    • Guo H, Barnard AS. Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. J Mater Chem A 2013;1:27-42.
    • (2013) J Mater Chem A , vol.1 , pp. 27-42
    • Guo, H.1    Barnard, A.S.2
  • 14
    • 0023759565 scopus 로고
    • The potential diagram for oxygen at pH 7
    • Wood PM. The potential diagram for oxygen at pH 7. Biochem J 1988;253:287-9.
    • (1988) Biochem J , vol.253 , pp. 287-289
    • Wood, P.M.1
  • 15
    • 0002425535 scopus 로고
    • The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2+)
    • Koppenol WH, Liebman JF. The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2+). J Phys Chem 1984;88:99-101.
    • (1984) J Phys Chem , vol.88 , pp. 99-101
    • Koppenol, W.H.1    Liebman, J.F.2
  • 16
    • 84859317731 scopus 로고    scopus 로고
    • PH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction
    • Bataineh H, Pestovsky O, Bakac A. pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction. Chem Sci 2012;3:1594-9.
    • (2012) Chem Sci , vol.3 , pp. 1594-1599
    • Bataineh, H.1    Pestovsky, O.2    Bakac, A.3
  • 17
    • 51949096737 scopus 로고    scopus 로고
    • Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen
    • Keenan CR, Sedlak DL. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ Sci Technol 2008;42:6936-41.
    • (2008) Environ Sci Technol , vol.42 , pp. 6936-6941
    • Keenan, C.R.1    Sedlak, D.L.2
  • 18
    • 0034036925 scopus 로고    scopus 로고
    • Role of carbonate speciation on the oxidation of Fe(II) by H2O2
    • King DW, Farlow R. Role of carbonate speciation on the oxidation of Fe(II) by H2O2. Mar Chem 2000;70:201-9.
    • (2000) Mar Chem , vol.70 , pp. 201-209
    • King, D.W.1    Farlow, R.2
  • 19
    • 0031657723 scopus 로고    scopus 로고
    • Autoxidation of ferrous ion complexes: A method for the generation of hydroxyl radicals
    • Kachur AV, Tuttle SW, Biaglow JE. Autoxidation of ferrous ion complexes: a method for the generation of hydroxyl radicals. Radiat Res 1998;150:475-82.
    • (1998) Radiat Res , vol.150 , pp. 475-482
    • Kachur, A.V.1    Tuttle, S.W.2    Biaglow, J.E.3
  • 20
    • 0025024953 scopus 로고
    • Resonance Raman pursuit of the change from iron(II)-oxygen (FeII-O2) to iron(III)-hydrohxyl (FeIII-OH) via iron(IV):oxygen (FeIV: O) in the autoxidation of ferrous iron-porphyrin
    • Mizutani Y, Hashimoto S, Tatsuno Y, et al. Resonance Raman pursuit of the change from iron(II)-oxygen (FeII-O2) to iron(III)-hydrohxyl (FeIII-OH) via iron(IV):oxygen (FeIV: O) in the autoxidation of ferrous iron-porphyrin. J Am Chem Soc 1990;112:6809-14.
    • (1990) J Am Chem Soc , vol.112 , pp. 6809-6814
    • Mizutani, Y.1    Hashimoto, S.2    Tatsuno, Y.3
  • 21
    • 77954472361 scopus 로고    scopus 로고
    • Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts
    • Rey A, Bahamonde A, Casas JA, et al. Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts. Water Sci Technol 2010;61:2769-78.
    • (2010) Water Sci Technol , vol.61 , pp. 2769-2778
    • Rey, A.1    Bahamonde, A.2    Casas, J.A.3
  • 22
    • 0000546986 scopus 로고
    • Production of hydroxyl radicals by iron solid compounds
    • Zalma R, Bonneau L, Guignard J, et al. Production of hydroxyl radicals by iron solid compounds. Toxicol Environ Chem 1987;13:171-87.
    • (1987) Toxicol Environ Chem , vol.13 , pp. 171-187
    • Zalma, R.1    Bonneau, L.2    Guignard, J.3
  • 23
    • 0032524509 scopus 로고    scopus 로고
    • Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications
    • Lin SS, Gurol MD. Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ Sci Technol 1998;32:1417-23.
    • (1998) Environ Sci Technol , vol.32 , pp. 1417-1423
    • Lin, S.S.1    Gurol, M.D.2
  • 24
    • 0033214248 scopus 로고    scopus 로고
    • Hydrogen peroxide decomposition in model subsurface systems
    • Watts RJ, Foget MK, Kong S, et al. Hydrogen peroxide decomposition in model subsurface systems. J Hazard Mater 1999;69:229-43.
    • (1999) J Hazard Mater , vol.69 , pp. 229-243
    • Watts, R.J.1    Foget, M.K.2    Kong, S.3
  • 25
    • 72249112169 scopus 로고    scopus 로고
    • A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values
    • Pham AL, Lee C, Doyle FM, et al. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ Sci Technol 2009;43:8930-5.
    • (2009) Environ Sci Technol , vol.43 , pp. 8930-8935
    • Pham, A.L.1    Lee, C.2    Doyle, F.M.3
  • 26
    • 84874352015 scopus 로고    scopus 로고
    • Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: Demonstration in the degradation of 2-chlorobiphenyl
    • Fang GD, Zhou DM, Dionysiou DD. Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: demonstration in the degradation of 2-chlorobiphenyl. J Hazard Mater 2013;250-251:68-75.
    • (2013) J Hazard Mater , vol.250-251 , pp. 68-75
    • Fang, G.D.1    Zhou, D.M.2    Dionysiou, D.D.3
  • 27
    • 39649108197 scopus 로고    scopus 로고
    • Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen
    • Keenan CR, Sedlak DL. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ Sci Technol 2008;42:1262-7.
    • (2008) Environ Sci Technol , vol.42 , pp. 1262-1267
    • Keenan, C.R.1    Sedlak, D.L.2
  • 28
    • 67349142639 scopus 로고    scopus 로고
    • Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide
    • Xue X, Hanna K, Deng N. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. J Hazard Mater 2009;166:407-14.
    • (2009) J Hazard Mater , vol.166 , pp. 407-414
    • Xue, X.1    Hanna, K.2    Deng, N.3
  • 29
    • 75349102695 scopus 로고    scopus 로고
    • Redox behavior of magnetite: Implications for contaminant reduction
    • Gorski CA, Nurmi JT, Tratnyek PG, et al. Redox behavior of magnetite: implications for contaminant reduction. Environ Sci Technol 2010;44:55-60.
    • (2010) Environ Sci Technol , vol.44 , pp. 55-60
    • Gorski, C.A.1    Nurmi, J.T.2    Tratnyek, P.G.3
  • 30
    • 78650982804 scopus 로고    scopus 로고
    • Surfacemediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity
    • Voinov MA, Sosa Pagán JO, Morrison E, et al. Surfacemediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 2011;133:35-41.
    • (2011) J Am Chem Soc , vol.133 , pp. 35-41
    • Voinov, M.A.1    Sosa Pagán, J.O.2    Morrison, E.3
  • 31
    • 84864683208 scopus 로고    scopus 로고
    • Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity
    • Chen Z, Yin JJ, Zhou YT, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012;6:4001-12.
    • (2012) ACS Nano , vol.6 , pp. 4001-4012
    • Chen, Z.1    Yin, J.J.2    Zhou, Y.T.3
  • 32
    • 0036644133 scopus 로고    scopus 로고
    • Decolorization and azo dye degradation by anaerobic/aerobic sequential process
    • Sponza DT, Isik M. Decolorization and azo dye degradation by anaerobic/aerobic sequential process. Enzyme Microb Technol 2002;31:102-10.
    • (2002) Enzyme Microb Technol , vol.31 , pp. 102-110
    • Sponza, D.T.1    Isik, M.2
  • 34
    • 0037443292 scopus 로고    scopus 로고
    • Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems
    • Kwan WP, Voelker BM. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol 2003;37:1150-8.
    • (2003) Environ Sci Technol , vol.37 , pp. 1150-1158
    • Kwan, W.P.1    Voelker, B.M.2
  • 35
    • 77953090370 scopus 로고    scopus 로고
    • The effect of surface area and crystal structure on the catalytic efficiency of iron(III) oxide nanoparticles in hydrogen peroxide decomposition
    • Gregor C, Hermanek M, Jancik D, et al. The effect of surface area and crystal structure on the catalytic efficiency of iron(III) oxide nanoparticles in hydrogen peroxide decomposition. Eur J Inorg Chem 2010;2010:2343-51.
    • (2010) Eur J Inorg Chem , vol.2010 , pp. 2343-2351
    • Gregor, C.1    Hermanek, M.2    Jancik, D.3
  • 36
    • 0031193606 scopus 로고    scopus 로고
    • Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs
    • Wang CB, Zhang W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 1997;31:2154-6.
    • (1997) Environ Sci Technol , vol.31 , pp. 2154-2156
    • Wang, C.B.1    Zhang, W.2
  • 37
    • 27744541776 scopus 로고    scopus 로고
    • Reduction of crystalline iron(III) oxyhydroxides using hydroquinone: Influence of phase and particle size
    • Anschutz AJ, Penn RL. Reduction of crystalline iron(III) oxyhydroxides using hydroquinone: influence of phase and particle size. Geochem Trans 2005;6:60-6.
    • (2005) Geochem Trans , vol.6 , pp. 60-66
    • Anschutz, A.J.1    Penn, R.L.2
  • 38
    • 65249085691 scopus 로고    scopus 로고
    • Surface chemistry and dissolution of α-FeOOH nanorods and microrods: Environmental implications of size-dependent interactions with oxalate
    • Cwiertny DM, Hunter GJ, Pettibone JM, et al. Surface chemistry and dissolution of α-FeOOH nanorods and microrods: Environmental implications of size-dependent interactions with oxalate. J Phys Chem C 2009;113:2175-86.
    • (2009) J Phys Chem C , vol.113 , pp. 2175-2186
    • Cwiertny, D.M.1    Hunter, G.J.2    Pettibone, J.M.3
  • 39
    • 84862687276 scopus 로고    scopus 로고
    • Influence of size, morphology, surface structure, and aggregation state on reductive dissolution of hematite nanoparticles with ascorbic acid
    • Echigo T, Aruguete D, Murayama M, et al. Influence of size, morphology, surface structure, and aggregation state on reductive dissolution of hematite nanoparticles with ascorbic acid. Geochim Cosmochim Ac 2009;90:149-62.
    • (2009) Geochim Cosmochim Ac , vol.90 , pp. 149-162
    • Echigo, T.1    Aruguete, D.2    Murayama, M.3
  • 41
    • 0000649079 scopus 로고
    • Particle size effect on the reaction goethite = hematite + water
    • Langmuir D. Particle size effect on the reaction goethite = hematite + water. Am J Sci 1971;271:147-56.
    • (1971) Am J Sci , vol.271 , pp. 147-156
    • Langmuir, D.1
  • 42
    • 34047129152 scopus 로고    scopus 로고
    • Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition
    • Chernyshova IV, Hochella MF, Madden AS. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys 2007;9:1736-50.
    • (2007) Phys Chem Chem Phys , vol.9 , pp. 1736-1750
    • Chernyshova, I.V.1    Hochella, M.F.2    Madden, A.S.3
  • 43
    • 33947424323 scopus 로고    scopus 로고
    • Oxygen K-edge emission and absorption spectroscopy of iron oxyhydroxide nanoparticles
    • Gilbert B, Kim CS, Dong CL, et al. Oxygen K-edge emission and absorption spectroscopy of iron oxyhydroxide nanoparticles. AIP Conf Proc 2007;882:721-5.
    • (2007) AIP Conf Proc , vol.882 , pp. 721-725
    • Gilbert, B.1    Kim, C.S.2    Dong, C.L.3
  • 44
    • 41149090312 scopus 로고    scopus 로고
    • Size-driven structural and thermodynamic complexity in iron oxides
    • Navrotsky A, Mazeina L, Majzlan J. Size-driven structural and thermodynamic complexity in iron oxides. Science 2008;319:1635-8.
    • (2008) Science , vol.319 , pp. 1635-1638
    • Navrotsky, A.1    Mazeina, L.2    Majzlan, J.3
  • 45
    • 79960909435 scopus 로고    scopus 로고
    • Thermodynamic modelling of nanomorphologies of hematite and goethite
    • Guo H, Barnard AS. Thermodynamic modelling of nanomorphologies of hematite and goethite. J Mater Chem 2011;21:11566-77.
    • (2011) J Mater Chem , vol.21 , pp. 11566-11577
    • Guo, H.1    Barnard, A.S.2
  • 46
    • 0025939910 scopus 로고
    • Solubility and dissolution of iron oxides
    • Schwertmann U. Solubility and dissolution of iron oxides. Plant Soil 1991;130:1-25.
    • (1991) Plant Soil , vol.130 , pp. 1-25
    • Schwertmann, U.1
  • 47
    • 0034999439 scopus 로고    scopus 로고
    • Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite
    • Larsena O, Postma D. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochim Cosmochim Ac 2001;65:1367-79.
    • (2001) Geochim Cosmochim Ac , vol.65 , pp. 1367-1379
    • Larsena, O.1    Postma, D.2
  • 48
    • 0037392614 scopus 로고    scopus 로고
    • Fe(III) oxide reactivity toward biological versus chemical reduction
    • Roden EE. Fe(III) oxide reactivity toward biological versus chemical reduction. Environ Sci Technol 2003;37:1319-24.
    • (2003) Environ Sci Technol , vol.37 , pp. 1319-1324
    • Roden, E.E.1
  • 49
    • 76149146039 scopus 로고    scopus 로고
    • Nanosized iron oxide colloids strongly enhance microbial iron reduction
    • Bosch J, Heister K, Hofmann T, et al. Nanosized iron oxide colloids strongly enhance microbial iron reduction. Appl Environ Microbiol 2010;76:184-9.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 184-189
    • Bosch, J.1    Heister, K.2    Hofmann, T.3
  • 50
    • 84868569888 scopus 로고    scopus 로고
    • Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with ferrihydrite and lepidocrocite
    • Shi Z, Zachara JM, Shi L, et al. Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with ferrihydrite and lepidocrocite. Environ Sci Technol 2012;46:11644-52.
    • (2012) Environ Sci Technol , vol.46 , pp. 11644-11652
    • Shi, Z.1    Zachara, J.M.2    Shi, L.3
  • 51
    • 84872393944 scopus 로고    scopus 로고
    • Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: Catalytic activities mediated by surface chemical states
    • Wang B, Yin JJ, Zhou XY, et al. Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: catalytic activities mediated by surface chemical states. J Phys Chem C 2013;117:383-92.
    • (2013) J Phys Chem C , vol.117 , pp. 383-392
    • Wang, B.1    Yin, J.J.2    Zhou, X.Y.3
  • 52
    • 33646547639 scopus 로고    scopus 로고
    • Degradation of phenol with Fenton-like treatment by using heterogeneous catalyst (modified iron oxide) and hydrogen peroxide
    • Lee S, Oh J, Park Y. Degradation of phenol with Fenton-like treatment by using heterogeneous catalyst (modified iron oxide) and hydrogen peroxide. Bull Korean Chem Soc 2006;27:489-94.
    • (2006) Bull Korean Chem Soc , vol.27 , pp. 489-494
    • Lee, S.1    Oh, J.2    Park, Y.3
  • 53
    • 35948999613 scopus 로고    scopus 로고
    • Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: Competition between the surface area and crystallinity of nanoparticles
    • Hermanek M, Zboril R, Medrik I, et al. Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 2007;129:10929-36.
    • (2007) J Am Chem Soc , vol.129 , pp. 10929-10936
    • Hermanek, M.1    Zboril, R.2    Medrik, I.3
  • 55
    • 84884183310 scopus 로고    scopus 로고
    • Redox signaling is an early event in the pathogenesis of renovascular hypertension
    • Hartono SP, Knudsen BE, Zubair AS, et al. Redox signaling is an early event in the pathogenesis of renovascular hypertension. Int J Mol Sci 2013;14:18640-56.
    • (2013) Int J Mol Sci , vol.14 , pp. 18640-18656
    • Hartono, S.P.1    Knudsen, B.E.2    Zubair, A.S.3
  • 56
    • 0036341207 scopus 로고    scopus 로고
    • Signal transduction and endocytosis: Close encounters of many kinds
    • Sorkin A, Von Zastrow M. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 2002;3:600-14.
    • (2002) Nat Rev Mol Cell Biol , vol.3 , pp. 600-614
    • Sorkin, A.1    Von Zastrow, M.2
  • 57
    • 78649898766 scopus 로고    scopus 로고
    • Mitochondrial matrix pH controls oxidative phosphorylation and metabolismsecretion coupling in INS-1E clonal beta cells
    • Akhmedov D, Braun M, Mataki C, et al. Mitochondrial matrix pH controls oxidative phosphorylation and metabolismsecretion coupling in INS-1E clonal beta cells. FASEB J 2010;24:4613-26.
    • (2010) FASEB J , vol.24 , pp. 4613-4626
    • Akhmedov, D.1    Braun, M.2    Mataki, C.3
  • 58
    • 0036285988 scopus 로고    scopus 로고
    • A large-conductance anion channel of the Golgi complex
    • Thompson RJ, Nordeen MH, Howell KE, et al. A large-conductance anion channel of the Golgi complex. Biophys J 2002;83:278-89.
    • (2002) Biophys J , vol.83 , pp. 278-289
    • Thompson, R.J.1    Nordeen, M.H.2    Howell, K.E.3
  • 59
    • 84878399494 scopus 로고    scopus 로고
    • PH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide
    • Lee H, Lee HJ, Sedlak DL, Lee C. pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide. Chemosphere 2013;92:652-8.
    • (2013) Chemosphere , vol.92 , pp. 652-658
    • Lee, H.1    Lee, H.J.2    Sedlak, D.L.3    Lee, C.4
  • 60
    • 0028991162 scopus 로고
    • Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material
    • Miller CM, Valentine RL. Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material. Water Res 1995;29:2353-9.
    • (1995) Water Res , vol.29 , pp. 2353-2359
    • Miller, C.M.1    Valentine, R.L.2
  • 61
    • 0031925437 scopus 로고    scopus 로고
    • Iron oxide surface catalyzed oxidation by quinoline by hydrogen peroxide
    • Valentine RL, Wang HCA. Iron oxide surface catalyzed oxidation by quinoline by hydrogen peroxide. J Environ Eng 1998;124:31-8.
    • (1998) J Environ Eng , vol.124 , pp. 31-38
    • Valentine, R.L.1    Hca, W.2
  • 62
    • 0037782275 scopus 로고    scopus 로고
    • Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: PH-dependent formation of oxidants in the Fenton reaction
    • Hug SJ, Leupin O. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ Sci Technol 2003;37:2734-42.
    • (2003) Environ Sci Technol , vol.37 , pp. 2734-2742
    • Hug, S.J.1    Leupin, O.2
  • 63
    • 79960332109 scopus 로고    scopus 로고
    • Influence of phosphate on the oxidation kinetics of nanomolar Fe(II) in aqueous solution at circumneutral pH
    • MaoY Pham ANP, Rose AL, et al. Influence of phosphate on the oxidation kinetics of nanomolar Fe(II) in aqueous solution at circumneutral pH. Geochim Cosmochim Ac 2011;75:4601-10.
    • (2011) Geochim Cosmochim Ac , vol.75 , pp. 4601-4610
    • Mao, Y.1    Pham, A.N.P.2    Rose, A.L.3
  • 64
    • 0028974245 scopus 로고
    • Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction
    • Lipczynska-Kochany E, Sprah G, Harms S. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 1995;30:9-20.
    • (1995) Chemosphere , vol.30 , pp. 9-20
    • Lipczynska-Kochany, E.1    Sprah, G.2    Harms, S.3
  • 65
    • 49349085256 scopus 로고    scopus 로고
    • Redox compartmentalization in eukaryotic cells
    • Go YM, Jones DP. Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 2008;1780:1273-90.
    • (2008) Biochim Biophys Acta , vol.1780 , pp. 1273-1290
    • Go, Y.M.1    Jones, D.P.2
  • 66
    • 26244447885 scopus 로고    scopus 로고
    • A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: Implications for cellular magnetic resonance imaging
    • Arbab AS, Wilson LB, Ashari P, et al. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 2005;18:383-9.
    • (2005) NMR Biomed , vol.18 , pp. 383-389
    • Arbab, A.S.1    Wilson, L.B.2    Ashari, P.3
  • 67
    • 84861609579 scopus 로고    scopus 로고
    • Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response
    • Laskar A, Ghosh M, Khattak SI, et al. Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response. Nanomedicine (Lond) 2012;7:705-17.
    • (2012) Nanomedicine (Lond) , vol.7 , pp. 705-717
    • Laskar, A.1    Ghosh, M.2    Khattak, S.I.3
  • 68
    • 61349202912 scopus 로고    scopus 로고
    • Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling
    • Apopa PL, Qian Y, Shao R, et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol 2009;6:1.
    • (2009) Part Fibre Toxicol , vol.6 , pp. 1
    • Apopa, P.L.1    Qian, Y.2    Shao, R.3
  • 69
    • 33744994982 scopus 로고    scopus 로고
    • Effects of humic substances on the oxidation of pentachlorophenol by peroxosulfate catalyzed by iron(III)-phthalocyanine-tetrasulfonic acid
    • Fukushima M, Tatsumi K. Effects of humic substances on the oxidation of pentachlorophenol by peroxosulfate catalyzed by iron(III)-phthalocyanine- tetrasulfonic acid. Bioresour Technol 2006;97:1605-11.
    • (2006) Bioresour Technol , vol.97 , pp. 1605-1611
    • Fukushima, M.1    Tatsumi, K.2
  • 70
    • 27744442489 scopus 로고    scopus 로고
    • Effect of humic acids on the Fenton degradation of phenol
    • Vione D, Merlo F, Valter M, et al. Effect of humic acids on the Fenton degradation of phenol. Environ Chem Lett 2004;2:129-33.
    • (2004) Environ Chem Lett , vol.2 , pp. 129-133
    • Vione, D.1    Merlo, F.2    Valter, M.3
  • 71
    • 0032933765 scopus 로고    scopus 로고
    • Quinolinic acid, α-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid enhance the Fenton reaction in phosphate buffer
    • Iwahashi H, Kawamori H, Fukushima K. Quinolinic acid, α-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid enhance the Fenton reaction in phosphate buffer. Chem Biol Interact 1999;118:201-15.
    • (1999) Chem Biol Interact , vol.118 , pp. 201-215
    • Iwahashi, H.1    Kawamori, H.2    Fukushima, K.3
  • 72
    • 81455138106 scopus 로고    scopus 로고
    • Effect of some naturally occurring iron ion chelators on the formation of radicals in the reaction mixtures of rat liver microsomes with ADP, Fe3+ and NADPH
    • Minakata K, Fukushima K, Nakamura M, et al. Effect of some naturally occurring iron ion chelators on the formation of radicals in the reaction mixtures of rat liver microsomes with ADP, Fe3+ and NADPH. J Clin Biochem Nutr 2011;49:207-15.
    • (2011) J Clin Biochem Nutr , vol.49 , pp. 207-215
    • Minakata, K.1    Fukushima, K.2    Nakamura, M.3
  • 73
    • 0035664317 scopus 로고    scopus 로고
    • Surface complexation and dissolution of hematite by C-1-C-6 dicarboxylic acids at pH 5.0
    • Duckworth OW, Martin ST. Surface complexation and dissolution of hematite by C-1-C-6 dicarboxylic acids at pH 5.0. Geochim Cosmochim Acta 2001;65:4289-301.
    • (2001) Geochim Cosmochim Acta , vol.65 , pp. 4289-4301
    • Duckworth, O.W.1    Martin, S.T.2
  • 74
    • 0036570150 scopus 로고    scopus 로고
    • Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation
    • Royer RA, Burgos WD, Fisher AS, et al. Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation. Environ Sci Technol 2002;36:1939-46.
    • (2002) Environ Sci Technol , vol.36 , pp. 1939-1946
    • Royer, R.A.1    Burgos, W.D.2    Fisher, A.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.