-
3
-
-
68149125478
-
Hierarchical ensemble of global and local classifiers for face recognition
-
Su Y., Shan S., Chen X., Gao W. Hierarchical ensemble of global and local classifiers for face recognition. IEEE Trans. Image Process. 2009, 18(8):1885-1896.
-
(2009)
IEEE Trans. Image Process.
, vol.18
, Issue.8
, pp. 1885-1896
-
-
Su, Y.1
Shan, S.2
Chen, X.3
Gao, W.4
-
4
-
-
79751526659
-
LIFT. A new framework of learning from testing data for face recognition
-
Cao Y., He H., Huang H. LIFT. A new framework of learning from testing data for face recognition. Neurocomputing 2011, 74:916-929.
-
(2011)
Neurocomputing
, vol.74
, pp. 916-929
-
-
Cao, Y.1
He, H.2
Huang, H.3
-
5
-
-
78650749488
-
Local margin based semi-supervised discriminant embedding for visual recognition
-
Pan F., Wang J., Lin X. Local margin based semi-supervised discriminant embedding for visual recognition. Neurocomputing 2011, 74:812-819.
-
(2011)
Neurocomputing
, vol.74
, pp. 812-819
-
-
Pan, F.1
Wang, J.2
Lin, X.3
-
6
-
-
79954425497
-
Online multiple instance boosting for object detection
-
Qi Z., Xu Y., Wang L., Song Y. Online multiple instance boosting for object detection. Neurocomputing 2011, 74:1769-1775.
-
(2011)
Neurocomputing
, vol.74
, pp. 1769-1775
-
-
Qi, Z.1
Xu, Y.2
Wang, L.3
Song, Y.4
-
7
-
-
35348895580
-
Semi-supervised Self-training of object detection models
-
C. Rosenberg, M. Hebert, H. Schneiderman, Semi-supervised Self-training of object detection models, in: Proceedings of the Seventh IEEE Workshops Application of Computer Vision, 2005, pp. 29-36.
-
(2005)
in: Proceedings of the Seventh IEEE Workshops Application of Computer Vision
, pp. 29-36
-
-
Rosenberg, C.1
Hebert, M.2
Schneiderman, H.3
-
9
-
-
77952554171
-
Co-training with relevant random subspaces
-
Yaslan Y., Cataltepe Z. Co-training with relevant random subspaces. Neurocomputing 2010, 73:1652-1661.
-
(2010)
Neurocomputing
, vol.73
, pp. 1652-1661
-
-
Yaslan, Y.1
Cataltepe, Z.2
-
11
-
-
84868610472
-
-
Using Unlabeled Data to Improve Text Classification, Ph.D. Dissertation, Department of Computer Science, Carnegie Mellon University
-
K. Nigam, Using Unlabeled Data to Improve Text Classification, Ph.D. Dissertation, Department of Computer Science, Carnegie Mellon University, 2001.
-
(2001)
-
-
Nigam, K.1
-
12
-
-
1942484430
-
-
Semi-supervised learning using Gaussian fields and harmonic functions, in: The 20th International Conference Machine Learning
-
X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, in: The 20th International Conference Machine Learning, 2003, pp. 912-919.
-
(2003)
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
-
13
-
-
33748412877
-
Combining labeled and unlabeled data with graph embedding
-
Zhao H. Combining labeled and unlabeled data with graph embedding. Neurocomputing 2006, 69:2385-2389.
-
(2006)
Neurocomputing
, vol.69
, pp. 2385-2389
-
-
Zhao, H.1
-
14
-
-
34548150972
-
Robust self-tuning semi-supervised learning
-
Wang F., Zhang Changshui Robust self-tuning semi-supervised learning. Neurocomputing 2007, 70:2931-2939.
-
(2007)
Neurocomputing
, vol.70
, pp. 2931-2939
-
-
Wang, F.1
Zhang, C.2
-
15
-
-
33749252873
-
-
MIT Press, Cambridge, MA, O. Chapelle, B. Schölkopf, A. Zien (Eds.)
-
Semi-supervised Learning 2006, MIT Press, Cambridge, MA. O. Chapelle, B. Schölkopf, A. Zien (Eds.).
-
(2006)
Semi-supervised Learning
-
-
-
16
-
-
84868625328
-
-
Semi-supervised Learning Literature Survey, Computer Sciences Technical Report 1530, University of Wisconsin-Madison
-
X. Zhu, Semi-supervised Learning Literature Survey, Computer Sciences Technical Report 1530, University of Wisconsin-Madison, 2008.
-
(2008)
-
-
Zhu, X.1
-
19
-
-
79957480232
-
Help-training for semi-supervised support vector machines
-
Adankon M.M., Cheriet M. Help-training for semi-supervised support vector machines. Pattern Recognition 2011, 44(9):2220-2230.
-
(2011)
Pattern Recognition
, vol.44
, Issue.9
, pp. 2220-2230
-
-
Adankon, M.M.1
Cheriet, M.2
-
20
-
-
84868625326
-
-
Splitting the unsupervised and supervised components of semi-supervised learning, in: Proceedings of the 22nd ICML Workshop on Learning with Partially Classified Training Data, Bonn, Germany
-
C.S. Oliveira, F.G. Cozman, I. Cohen, Splitting the unsupervised and supervised components of semi-supervised learning, in: Proceedings of the 22nd ICML Workshop on Learning with Partially Classified Training Data, Bonn, Germany, 2005.
-
(2005)
-
-
Oliveira, C.S.1
Cozman, F.G.2
Cohen, I.3
-
21
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
Ando R., Zhang T. A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 2005, 6:1817-1853.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1817-1853
-
-
Ando, R.1
Zhang, T.2
-
24
-
-
2542567719
-
Semi-supervised clustering by seeding
-
S. Basu, A. Banerjee, R.J. Rooney, Semi-supervised clustering by seeding, in: Proceedings of the 19th International Conference on Machine Learning, 2002, pp. 19-26.
-
(2002)
in: Proceedings of the 19th International Conference on Machine Learning
, pp. 19-26
-
-
Basu, S.1
Banerjee, A.2
Rooney, R.J.3
-
25
-
-
1942517347
-
Learning distance functions using equivalence relations
-
A. Bar-Hillel, T. Hertz, N. Shental, D. Weinshall, Learning distance functions using equivalence relations, in: Proceedings of the 20th International Conference on Machine Learning, 2003, pp. 11-18.
-
(2003)
in: Proceedings of the 20th International Conference on Machine Learning.
, pp. 11-18
-
-
Bar-Hillel, A.1
Hertz, T.2
Shental, N.3
Weinshall, D.4
-
26
-
-
84868619815
-
Discussion of FCM algorithm with partial supervision
-
H. Gan, X. Tong, Q. Jiang, N. Sang, X. Kong, F. Wang, Discussion of FCM algorithm with partial supervision, in: Proceedings of the Eighth International Symposium on Distributed Computing and Applications to Business, Engineering and Science, 2009, pp. 27-31.
-
(2009)
in: Proceedings of the Eighth International Symposium on Distributed Computing and Applications to Business, Engineering and Science
, pp. 27-31
-
-
Gan, H.1
Tong, X.2
Jiang, Q.3
Sang, N.4
Kong, X.5
Wang, F.6
-
27
-
-
84868628128
-
The feature weighted FCM algorithm with semi-supervised
-
X. Tong, Q. Jiang, N. Sang, H. Gan, S. Zeng, The feature weighted FCM algorithm with semi-supervised, in: Proceedings of the Eighth International Symposium on Distributed Computing and Applications to Business, Engineering and Science, 2009, pp. 22-26.
-
(2009)
in: Proceedings of the Eighth International Symposium on Distributed Computing and Applications to Business, Engineering and Science
, pp. 22-26
-
-
Tong, X.1
Jiang, Q.2
Sang, N.3
Gan, H.4
Zeng, S.5
-
29
-
-
80052955921
-
A review of optimization methodologies in support vector machines
-
Shawe-Taylor J., Sun S. A review of optimization methodologies in support vector machines. Neurocomputing 2011, 74:3609-3618.
-
(2011)
Neurocomputing
, vol.74
, pp. 3609-3618
-
-
Shawe-Taylor, J.1
Sun, S.2
-
31
-
-
84868619812
-
-
UCI Repository of Machine Learning Databases
-
C.C. Blake, C.J. Merz, UCI Repository of Machine Learning Databases, 2010. http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
(2010)
-
-
Blake, C.C.1
Merz, C.J.2
-
32
-
-
41549144249
-
Optimization techniques for semi-supervised support vector machines
-
Chapelle O., Sindhwani V., Keerthi S.S. Optimization techniques for semi-supervised support vector machines. J. Mach. Learn. Res. 2008, 9:203-233.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 203-233
-
-
Chapelle, O.1
Sindhwani, V.2
Keerthi, S.S.3
-
34
-
-
33747128180
-
Large scale transductive SVMs
-
Collobert R., Sinz F., Weston J., Bottou L. Large scale transductive SVMs. J. Mach. Learn. Res. 2006, 7:1687-1712.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1687-1712
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
|