메뉴 건너뛰기




Volumn 470, Issue 2167, 2014, Pages

Correction: Machine learning methods in the computational biology of cancer (Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (2014) 470 (20140081) DOI:10.1098/rspa.2014.0081);Machine learning methods in the computational biology of cancer

Author keywords

Cancer biology; Compressed sensing; Elastic net algorithm; LASSO algorithm; Machine learning; Support vector machines

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMPRESSED SENSING; DISEASES; FEATURE EXTRACTION; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 84901280357     PISSN: 13645021     EISSN: 14712946     Source Type: Journal    
DOI: 10.1098/rspa.2014.0805     Document Type: Erratum
Times cited : (37)

References (64)
  • 3
    • 84901290437 scopus 로고    scopus 로고
    • SEER. 2013 See http://seer.cancer.gov/statfacts/html/all.html.
    • (2013)
  • 4
    • 84872967522 scopus 로고    scopus 로고
    • Cancer statistics, 2013
    • doi:10.3322/caac.21166
    • Siegel R, Naishadham D, Jemal A. 2013 Cancer statistics, 2013. CA Cancer J. Clin. 63, 11-30. (doi:10.3322/caac.21166)
    • (2013) CA Cancer J. Clin , vol.63 , pp. 11-30
    • Siegel, R.1    Naishadham, D.2    Jemal, A.3
  • 5
    • 84901246717 scopus 로고    scopus 로고
    • Cancer Research UK. 2013 See http://www.cancerresearchuk.org.
    • (2013)
  • 6
    • 84901248324 scopus 로고    scopus 로고
    • World Health Organization. 2013 See http://www.who.int/cancer/en/.
    • (2013)
  • 7
    • 78549279528 scopus 로고    scopus 로고
    • Histological, molecular and functional subtypes of breast cancers
    • doi:10.4161/cbt.10.10.13879
    • Malhotra GK, Zhao X, Band H, Band V. 2010 Histological, molecular and functional subtypes of breast cancers. Cancer Biol. Ther. 10, 955-960. (doi:10.4161/cbt.10.10.13879)
    • (2010) Cancer Biol. Ther , vol.10 , pp. 955-960
    • Malhotra, G.K.1    Zhao, X.2    Band, H.3    Band, V.4
  • 8
    • 84901290328 scopus 로고    scopus 로고
    • GEO. 2013 See http://www.ncbi.nlm.nih.gov/geo/.
    • (2013)
  • 9
    • 84901280121 scopus 로고    scopus 로고
    • COSMIC. 2013 See http://www.sanger.ac.uk/genetics/CGP/cosmic.
    • (2013)
  • 10
    • 84901279393 scopus 로고    scopus 로고
    • The Cancer Genome Atlas. 2013 See http://cancergenome.nih.gov/.
    • (2013)
  • 11
    • 84901247944 scopus 로고    scopus 로고
    • International Cancer Genomics Consortium. 2013 See http://icgc.org/.
    • (2013)
  • 13
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • doi:10.1080/00401706.1970.10488634
    • Hoerl AE, Kennard RW. 1970 Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55-67. (doi:10.1080/00401706.1970. 10488634)
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 14
    • 0000418073 scopus 로고
    • On the stability of inverse problems
    • Tikhonov AN. 1943 On the stability of inverse problems. Doklady Akademii Nauk SSSR 39, 195-198.
    • (1943) Doklady Akademii Nauk SSSR , vol.39 , pp. 195-198
    • Tikhonov, A.N.1
  • 15
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • doi:10.1137/S0097539792240406
    • Natarajan BK. 1995 Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227-234. (doi:10.1137/S0097539792240406)
    • (1995) SIAM J. Comput , vol.24 , pp. 227-234
    • Natarajan, B.K.1
  • 16
    • 84871600478 scopus 로고    scopus 로고
    • A unified framework for highdimensional analysis of m-estimators with decomposable regularizers
    • doi:10.1214/12-STS400
    • Negabhan S, Ravikumar P, Wainwright MJ, Yu B. 2012 A unified framework for highdimensional analysis of m-estimators with decomposable regularizers. Stat. Sci. 27, 538-557. (doi:10.1214/12-STS400)
    • (2012) Stat. Sci , vol.27 , pp. 538-557
    • Negabhan, S.1    Ravikumar, P.2    Wainwright, M.J.3    Yu, B.4
  • 17
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani R. 1996 Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. 58, 267-288.
    • (1996) J. R. Stat. Soc , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 19
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • doi:10.1111/j.1467-9868.2005.00503.x)
    • Zou H, Hastie T. 2005 Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301-320. (doi:10.1111/j.1467-9868.2005. 00503.x)
    • (2005) J. R. Stat. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 20
    • 84889016932 scopus 로고    scopus 로고
    • Systematic genomic identification of colorectal genes delineating advanced from early clinical stage and metastasis
    • doi:10.1186/1755-8794-6-54
    • Lee H, Flaherty P, Ji HP. 2013 Systematic genomic identification of colorectal genes delineating advanced from early clinical stage and metastasis. BMC Med. Genomics 6, 54. (doi:10.1186/1755-8794-6-54)
    • (2013) BMC Med. Genomics , vol.6 , pp. 54
    • Lee, H.1    Flaherty, P.2    Ji, H.P.3
  • 21
    • 84863922124 scopus 로고    scopus 로고
    • Comprehensive molecular characterization of human colon and rectal cancer
    • Network TCGAR doi:10.1038/nature11252
    • Network TCGAR. 2012 Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337. (doi:10.1038/nature11252)
    • (2012) Nature , vol.487 , pp. 330-337
  • 22
    • 83355174923 scopus 로고    scopus 로고
    • Optimized application of penalized regression methods to diverse genomic data
    • doi:10.1093/bioinformatics/btr591
    • Waldron L, Pintille M, Tsao M-S, Shepherd FA, Huttenhower C, Jurisica I. 2011 Optimized application of penalized regression methods to diverse genomic data. Bioinformatics 27, 3339-3406. (doi:10.1093/bioinformatics/btr591)
    • (2011) Bioinformatics , vol.27 , pp. 3339-3406
    • Waldron, L.1    Pintille, M.2    Tsao, M.-S.3    Shepherd, F.A.4    Huttenhower, C.5    Jurisica, I.6
  • 24
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in smoothing spline analysis of variance models
    • doi:10.1214/009053606000000722
    • Lin Y, Zhang H. 2006 Component selection and smoothing in smoothing spline analysis of variance models. Ann. Stat. 34, 2272-2297. (doi:10.1214/009053606000000722)
    • (2006) Ann. Stat , vol.34 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.2
  • 29
    • 79959838081 scopus 로고    scopus 로고
    • Integrated genomic analyses of ovarian carcinoma
    • The Cancer Genome Atlas Research Network. doi:10.1038/nature10166
    • The Cancer Genome Atlas Research Network. 2011 Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615. (doi:10.1038/nature10166)
    • (2011) Nature , vol.474 , pp. 609-615
  • 31
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • (doi:10.1109/TIT.2006.871582
    • Donoho D. 2006 Compressed sensing. IEEE Trans. Inform. Theory 52, 1289-1306. (doi:10.1109/TIT.2006.871582)
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 1289-1306
    • Donoho, D.1
  • 32
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations, the minimal l1-norm solution is also the sparsest solution
    • doi:10.1002/cpa.20132
    • Donoho D. 2006 For most large underdetermined systems of linear equations, the minimal l1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59, 797-829. (doi:10.1002/cpa.20132)
    • (2006) Commun. Pure Appl. Math , vol.59 , pp. 797-829
    • Donoho, D.1
  • 33
    • 42649140570 scopus 로고    scopus 로고
    • The restricted isometry property and its implications for compresed sensing
    • Candès E. 2008 The restricted isometry property and its implications for compresed sensing. C. R. Acad. Sci. Paris, Ser. I 346, 589-592.
    • (2008) C R. Acad. Sci. Paris, Ser. i , vol.346 , pp. 589-592
    • Candès, E.1
  • 34
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • (doi:10.1109/TIT.2005.858979
    • Candès EJ, Tao T. 2005 Decoding by linear programming. IEEE Trans. Inform. Theory 51, 4203-4215. (doi:10.1109/TIT.2005.858979)
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 4203-4215
    • Candès, E.J.1    Tao, T.2
  • 35
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • doi:10.1214/009053606000001523
    • Candès EJ, Tao T. 2007 The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35, 2313-2351. (doi:10.1214/009053606000001523)
    • (2007) Ann. Stat , vol.35 , pp. 2313-2351
    • Candès, E.J.1    Tao, T.2
  • 36
    • 69049120308 scopus 로고    scopus 로고
    • Near ideal model selection by l1 minimization
    • doi:10.1214/08-AOS653
    • Candès EJ, Plan Y. 2009 Near ideal model selection by l1 minimization. Ann. Stat. 37, 2145-2177. (doi:10.1214/08-AOS653)
    • (2009) Ann. Stat , vol.37 , pp. 2145-2177
    • Candès, E.J.1    Plan, Y.2
  • 37
    • 84907737173 scopus 로고    scopus 로고
    • Compressive sensing by random convolution
    • doi:10.1137/08072975X)
    • Romberg J. 2009 Compressive sensing by random convolution. SIAM J. Imaging Sci. 2, 1098-1128. (doi:10.1137/08072975X)
    • (2009) SIAM J Imaging Sci , vol.2 , pp. 1098-1128
    • Romberg, J.1
  • 38
    • 57349181932 scopus 로고    scopus 로고
    • Compressed sensing and best k-term approximation
    • doi:10.1090/S0894-0347-08-00610-3
    • Cohen A,Wolfgang D, Devore R. 2009 Compressed sensing and best k-term approximation. J. Am. Math. Soc. 22, 211-231. (doi:10.1090/S0894-0347-08-00610- 3)
    • (2009) J. Am. Math. Soc , vol.22 , pp. 211-231
    • Cohen Awolfgang, D.1    Devore, R.2
  • 39
    • 0038166193 scopus 로고    scopus 로고
    • Database-friendly random projections: Johnson-Lindenstraus with binary coins
    • doi:10.1016/S0022-0000(03)00025-4
    • Achlioptas D. 2003 Database-friendly random projections: Johnson-Lindenstraus with binary coins. J. Comput. Syst. Sci. 66, 671-687. (doi:10.1016/S0022-0000(03)00025-4)
    • (2003) J. Comput. Syst. Sci , vol.66 , pp. 671-687
    • Achlioptas, D.1
  • 40
    • 55649115527 scopus 로고    scopus 로고
    • A simple proof of the restricted isometry property for random matrices
    • doi:10.1007/s00365-007-9003-x)
    • Baraniuk R, Davenport M, Devore R,Wakin M. 2008 A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253-263. (doi:10.1007/s00365-007-9003-x)
    • (2008) Constr. Approx , vol.28 , pp. 253-263
    • Baraniuk, R.1    Davenport, M.2    Devore Rwakin, M.3
  • 42
    • 34249753618 scopus 로고    scopus 로고
    • Support vector networks
    • doi:10.1007/BF00994018
    • Cortes C, Vapnik VN. 1997 Support vector networks. Mach. Learn. 20, 273-297. (doi:10.1007/BF00994018)
    • (1997) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 43
    • 0029255662 scopus 로고
    • Robust trainability of single neurons
    • doi:10.1006/jcss.1995.1011
    • Höffgen K-U, Simon H-U, Horn KSV. 1995 Robust trainability of single neurons. J. Comput. Syst. Sci. 50, 114-125. (doi:10.1006/jcss.1995.1011)
    • (1995) J. Comput. Syst. Sci , vol.50 , pp. 114-125
    • Höffgen, K.-U.1    Simon, H.-U.2    Horn, K.S.V.3
  • 44
    • 0000392470 scopus 로고
    • Some special Vapnik-Chervonenkis classes
    • doi:10.1016/0012-365X(81)90274-0
    • Wenocur RS, Dudley RM. 1981 Some special Vapnik-Chervonenkis classes. Discret. Math. 33, 313-318. (doi:10.1016/0012-365X(81)90274-0)
    • (1981) Discret. Math , vol.33 , pp. 313-318
    • Wenocur, R.S.1    Dudley, R.M.2
  • 48
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • doi:10.1023/A:1012487302797
    • Guyon I, Weston J, Barnhill S, Vapnik V. 2002 Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389-422. (doi:10.1023/A:1012487302797)
    • (2002) Mach. Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 49
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • Madison, WI, 24-27 July 1998 (ed. JW Shavlik). San Mateo, CA: Morgan Kaufmann
    • Bradley PS, Mangasarian OL. 1998 Feature selection via concave minimization and support vector machines. In Machine Learning: Proceedings of the 15th Int. Conf. (ICML '98), Madison, WI, 24-27 July 1998 (ed. JW Shavlik), pp. 82-90. San Mateo, CA: Morgan Kaufmann.
    • (1998) Machine Learning: Proceedings of the 15th Int. Conf. (ICML '98) , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 50
    • 0002648330 scopus 로고    scopus 로고
    • Controlling the sensitivity of support vector machines
    • Stockholm, Sweden, 2 August 1999. San Mateo, CA: Morgan Kaufmann
    • Veropoulos K, Campbell C, Cristianini N. 1999 Controlling the sensitivity of support vector machines. In IJCAI Workshop on Support Vector Machines. Stockholm, Sweden, 2 August 1999, pp. 55-60. San Mateo, CA: Morgan Kaufmann.
    • (1999) IJCAI Workshop on Support Vector Machines , pp. 55-60
    • Veropoulos, K.1    Campbell, C.2    Cristianini, N.3
  • 51
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer K, Singer Y. 2001 On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2, 265-292.
    • (2001) J. Mach. Learn. Res , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 52
    • 71749087775 scopus 로고    scopus 로고
    • Gene expression profiling and prediction of clinical outcome in ovarian cancer
    • doi:10.1016/j.critrevonc.2009.01.007
    • Sabatier R, Finetti P, Cervera N, Birnbaum D, Bertucci F. 2009 Gene expression profiling and prediction of clinical outcome in ovarian cancer. Crit. Rev. Oncol. Hematol. 72, 98-109. (doi:10.1016/j.critrevonc.2009.01.007)
    • (2009) Crit. Rev. Oncol. Hematol , vol.72 , pp. 98-109
    • Sabatier, R.1    Finetti, P.2    Cervera, N.3    Birnbaum, D.4    Bertucci, F.5
  • 53
    • 84871662111 scopus 로고    scopus 로고
    • Integrated analysis of gene expression profiles associated with response of platinum/paclitaxel-based treatment in epithelial ovarian cancer
    • doi:10.1371/journal.pone.0052745
    • Han Y, Huang H, Xiao Z, Zhang W, Cao Y, Qu L, Shou C. 2012 Integrated analysis of gene expression profiles associated with response of platinum/paclitaxel-based treatment in epithelial ovarian cancer. PLoS ONE 7, e52745. (doi:10.1371/journal.pone.0052745)
    • (2012) PLoS ONE , vol.7
    • Han, Y.1    Huang, H.2    Xiao, Z.3    Zhang, W.4    Cao, Y.5    Qu, L.6    Shou, C.7
  • 54
    • 66849097914 scopus 로고    scopus 로고
    • A prognostic gene expression index in ovarian cancer - Validation across different independent data sets
    • doi:10.1002/path.2547
    • Denkert C et al. 2009 A prognostic gene expression index in ovarian cancer - validation across different independent data sets. J. Pathol. 218, 273-280. (doi:10.1002/path.2547)
    • (2009) J. Pathol , vol.218 , pp. 273-280
    • Denkert, C.1
  • 55
    • 20144389741 scopus 로고    scopus 로고
    • Gene expression profiles predict early relapse in ovarian cancer after platinum-paclitaxel chemotherapy
    • doi:10.1158/1078-0432.CCR-04-1673
    • Hartmann LC et al. 2005 Gene expression profiles predict early relapse in ovarian cancer after platinum-paclitaxel chemotherapy. Clin. Cancer Res. 11, 2149-2155. (doi:10.1158/1078-0432.CCR-04-1673)
    • (2005) Clin. Cancer Res , vol.11 , pp. 2149-2155
    • Hartmann, L.C.1
  • 56
    • 79958728723 scopus 로고    scopus 로고
    • A gene expression signature identifies two prognostic subgroups of basal breast cancer
    • doi:10.1007/s10549-010-0897-9
    • Sabatier R et al. 2011 A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Res. Treat. 126, 407-420. (doi:10.1007/s10549-010-0897-9)
    • (2011) Breast Cancer Res. Treat , vol.126 , pp. 407-420
    • Sabatier, R.1
  • 57
    • 84893834249 scopus 로고    scopus 로고
    • Control of stereotactic body radiation therapy for early-stage non-small cell lung cancer
    • doi:10.1016/j.ijrobp.2013.11.216
    • Klement RJ et al. 2013 Control of stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 88, 732-738. (doi:10.1016/j.ijrobp.2013.11.216)
    • (2013) Int. J. Radiat. Oncol. Biol. Phys , vol.88 , pp. 732-738
    • Klement, R.J.1
  • 58
    • 84875373574 scopus 로고    scopus 로고
    • In silico drug screening and potential target identification for hepatocellular carcinoma using support vector machines based on drug screening result
    • doi:10.1016/j.gene.2012.11.030
    • Yang W-LR, Lee Y-E, Chen M-H, Chao K-M, Huang C-YF. 2013 In silico drug screening and potential target identification for hepatocellular carcinoma using support vector machines based on drug screening result. Gene 518, 201-208. (doi:10.1016/j.gene.2012.11.030)
    • (2013) Gene , vol.518 , pp. 201-208
    • W-Lr, Y.1    Lee, Y.-E.2    Chen, M.-H.3    Chao, K.-M.4    C-Yf, H.5
  • 59
    • 84881281027 scopus 로고    scopus 로고
    • Improved sparse multi-class SVM and its application for gene selection in cancer classification
    • doi:10.4137/CIN.S10212
    • Huang L, Zhang HH, Zeng Z-B, Bushel PR. 2013 Improved sparse multi-class SVM and its application for gene selection in cancer classification. Cancer Inform. 12, 143-153. (doi:10.4137/CIN.S10212)
    • (2013) Cancer Inform , vol.12 , pp. 143-153
    • Huang, L.1    Zhang, H.H.2    Zeng, Z.-B.3    Bushel, P.R.4
  • 60
    • 77958487535 scopus 로고    scopus 로고
    • Stability selection
    • doi:10.1111/j.1467-9868.2010.00740.x)
    • Meinshausen N, Bühlmann P. 2010 Stability selection. J. R. Stat. Soc. B 72, 417-483. (doi:10.1111/j.1467-9868.2010.00740.x)
    • (2010) J. R. Stat. Soc , vol.72 B , pp. 417-483
    • Meinshausen, N.1    Bühlmann, P.2
  • 61
    • 84874285158 scopus 로고    scopus 로고
    • A new feature selection algorithm for two-class classification problems and application to endometrial cancer
    • Maui, Hawaii, 10-13 December 2013. Piscataway, NJ: IEEE
    • Ahsen ME, Singh NK, Boren T, Vidyasagar M, White MA. 2012 A new feature selection algorithm for two-class classification problems and application to endometrial cancer. In Proc. IEEE Conf. Decision and Control, Maui, Hawaii, 10-13 December 2013, pp. 2976-2982. Piscataway, NJ: IEEE.
    • (2012) Proc. IEEE Conf. Decision and Control , pp. 2976-2982
    • Ahsen, M.E.1    Singh, N.K.2    Boren, T.3    Vidyasagar, M.4    White, M.A.5
  • 62
    • 84862823682 scopus 로고    scopus 로고
    • SVM-T-RFE: A novel gene selection algorithm for identifying metastasis-related genes in colorectal cancer using gene expression profiles
    • doi:10.1016/j.bbrc.2012.01.087
    • Li X, Peng S, Chen J, Lüc B, Zhanga H, Lai M. 2012 SVM-T-RFE: a novel gene selection algorithm for identifying metastasis-related genes in colorectal cancer using gene expression profiles. Biochem. Biophys. Res. Commun. 419, 148-153. (doi:10.1016/j.bbrc.2012.01.087)
    • (2012) Biochem. Biophys. Res. Commun , vol.419 , pp. 148-153
    • Li, X.1    Peng, S.2    Chen, J.3    Lüc, B.4    Zhanga, H.5    Lai, M.6
  • 63
    • 40949141349 scopus 로고    scopus 로고
    • Prospective assessment of lymphatic dissemination in endometrial cancer: A paradigm shift in surgical staging
    • doi:10.1016/j.ygyno.2008.01.023
    • Mariani A, Dowdy SC, Cliby WA, Gostout BS, Jones MB, Wilson TO, Podratz KC. 2008 Prospective assessment of lymphatic dissemination in endometrial cancer: a paradigm shift in surgical staging. Gynecol. Oncol. 109, 11-18. (doi:10.1016/j.ygyno.2008.01.023)
    • (2008) Gynecol. Oncol , vol.109 , pp. 11-18
    • Mariani, A.1    Dowdy, S.C.2    Cliby, W.A.3    Gostout, B.S.4    Jones, M.B.5    Wilson, T.O.6    Podratz, K.C.7
  • 64
    • 77955136689 scopus 로고    scopus 로고
    • The benefit of group sparsity
    • doi:10.1214/09-AOS778
    • Huang J, Zhang T. 2010 The benefit of group sparsity. Ann. Stat. 38, 1978-2004. (doi:10.1214/09-AOS778)
    • (2010) Ann. Stat , vol.38 , pp. 1978-2004
    • Huang, J.1    Zhang, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.